cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330445 Expansion of e.g.f.: Sum_{k>=1} log(1 + (exp(x) - 1)^k)/k.

This page as a plain text file.
%I A330445 #8 Dec 15 2019 05:36:03
%S A330445 0,1,1,5,19,89,691,7265,74299,722489,8224291,130439825,2456898379,
%T A330445 45287950889,781106871091,13479917085185,268959501687259,
%U A330445 6688186010251289,187628967639969091,5285049770439071345,144061583071243096939
%N A330445 Expansion of e.g.f.: Sum_{k>=1} log(1 + (exp(x) - 1)^k)/k.
%H A330445 Vaclav Kotesovec, <a href="/A330445/b330445.txt">Table of n, a(n) for n = 0..400</a>
%F A330445 E.g.f.: log(Product_{k>=1} (1 + (exp(x) - 1)^k)^(1/k)).
%F A330445 Conjecture: a(n) ~ (n-1)! / (log(2))^(n-1).
%t A330445 nmax = 20; CoefficientList[Series[Sum[Log[1 + (Exp[x] - 1)^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
%t A330445 nmax = 20; CoefficientList[Series[Log[Product[(1 + (Exp[x] - 1)^k)^(1/k), {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
%Y A330445 Cf. A330351.
%K A330445 nonn
%O A330445 0,4
%A A330445 _Vaclav Kotesovec_, Dec 15 2019