This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330452 #9 Dec 29 2019 16:01:05 %S A330452 1,1,2,7,13,34,81,175,403,890,1977,4262,9356,19963,42573,90865,191206, %T A330452 401803,837898,1744231,3607504,7436628,15254309,31185686,63552725, %U A330452 128963236,260933000,526140540,1057927323,2120500885,4239012067,8449746787,16799938614 %N A330452 Number of set partitions of strict multiset partitions of integer partitions of n. %C A330452 Number of sets of disjoint nonempty sets of nonempty multisets of positive integers with total sum n. %H A330452 Andrew Howroyd, <a href="/A330452/b330452.txt">Table of n, a(n) for n = 0..500</a> %F A330452 a(n) = Sum_{0 <= k <= n} A330463(n,k) * A000110(k). %e A330452 The a(4) = 13 partitions: %e A330452 ((4)) ((22)) ((31)) ((211)) ((1111)) %e A330452 ((1)(3)) ((1)(21)) ((1)(111)) %e A330452 ((1))((3)) ((2)(11)) ((1))((111)) %e A330452 ((1))((21)) %e A330452 ((2))((11)) %t A330452 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; %t A330452 Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}] %o A330452 (PARI) \\ here BellP is A000110 as series. %o A330452 BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))} %o A330452 seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ _Andrew Howroyd_, Dec 29 2019 %Y A330452 Cf. A001970, A007713, A050343, A063834, A089259, A261049, A271619, A279375, A294617, A318565, A323787-A323795, A330452-A330459, A330460. %K A330452 nonn %O A330452 0,3 %A A330452 _Gus Wiseman_, Dec 16 2019 %E A330452 Terms a(18) and beyond from _Andrew Howroyd_, Dec 29 2019