cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330452 Number of set partitions of strict multiset partitions of integer partitions of n.

This page as a plain text file.
%I A330452 #9 Dec 29 2019 16:01:05
%S A330452 1,1,2,7,13,34,81,175,403,890,1977,4262,9356,19963,42573,90865,191206,
%T A330452 401803,837898,1744231,3607504,7436628,15254309,31185686,63552725,
%U A330452 128963236,260933000,526140540,1057927323,2120500885,4239012067,8449746787,16799938614
%N A330452 Number of set partitions of strict multiset partitions of integer partitions of n.
%C A330452 Number of sets of disjoint nonempty sets of nonempty multisets of positive integers with total sum n.
%H A330452 Andrew Howroyd, <a href="/A330452/b330452.txt">Table of n, a(n) for n = 0..500</a>
%F A330452 a(n) = Sum_{0 <= k <= n} A330463(n,k) * A000110(k).
%e A330452 The a(4) = 13 partitions:
%e A330452   ((4))  ((22))  ((31))      ((211))      ((1111))
%e A330452                  ((1)(3))    ((1)(21))    ((1)(111))
%e A330452                  ((1))((3))  ((2)(11))    ((1))((111))
%e A330452                              ((1))((21))
%e A330452                              ((2))((11))
%t A330452 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
%t A330452 Table[Length[Select[ppl[n,3],UnsameQ@@Join@@#&]],{n,0,10}]
%o A330452 (PARI) \\ here BellP is A000110 as series.
%o A330452 BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))}
%o A330452 seq(n)={my(b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^numbpart(k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ _Andrew Howroyd_, Dec 29 2019
%Y A330452 Cf. A001970, A007713, A050343, A063834, A089259, A261049, A271619, A279375, A294617, A318565, A323787-A323795, A330452-A330459, A330460.
%K A330452 nonn
%O A330452 0,3
%A A330452 _Gus Wiseman_, Dec 16 2019
%E A330452 Terms a(18) and beyond from _Andrew Howroyd_, Dec 29 2019