This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330453 #8 Jul 18 2021 20:55:12 %S A330453 1,1,3,9,23,62,161,410,1031,2579,6359,15575,37830,91241,218581,520544, %T A330453 1232431,2902644,6802178,15866054,36844016,85202436,196251933, %U A330453 450341874,1029709478,2346409350,5329371142,12066816905,27240224766,61317231288,137643961196 %N A330453 Number of strict multiset partitions of multiset partitions of integer partitions of n. %C A330453 Number of sets of nonempty multisets of nonempty multisets of positive integers with total sum n. %H A330453 Alois P. Heinz, <a href="/A330453/b330453.txt">Table of n, a(n) for n = 0..3853</a> %F A330453 Weigh transform of A001970. The weigh transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} (1 + x^i)^s_i. %e A330453 The a(4) = 23 partitions: %e A330453 ((4)) ((22)) ((31)) ((211)) ((1111)) %e A330453 ((2)(2)) ((1)(3)) ((1)(21)) ((1)(111)) %e A330453 ((1))((3)) ((2)(11)) ((11)(11)) %e A330453 ((1)(1)(2)) ((1))((111)) %e A330453 ((1))((21)) ((1)(1)(11)) %e A330453 ((2))((11)) ((1))((1)(11)) %e A330453 ((1))((1)(2)) ((1)(1)(1)(1)) %e A330453 ((2))((1)(1)) ((11))((1)(1)) %e A330453 ((1))((1)(1)(1)) %p A330453 with(numtheory): with(combinat): %p A330453 b:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A330453 numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n) %p A330453 end: %p A330453 a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d) %p A330453 *d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n) %p A330453 end: %p A330453 seq(a(n), n=0..32); # _Alois P. Heinz_, Jul 18 2021 %t A330453 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; %t A330453 Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}] %Y A330453 The not necessarily strict case is A007713. %Y A330453 Cf. A001055, A001970, A050336, A050343, A089259, A261049, A271619, A316980, A318566, A323787-A323795, A330452-A330459, A330461, A330463. %K A330453 nonn %O A330453 0,3 %A A330453 _Gus Wiseman_, Dec 17 2019