cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330453 Number of strict multiset partitions of multiset partitions of integer partitions of n.

This page as a plain text file.
%I A330453 #8 Jul 18 2021 20:55:12
%S A330453 1,1,3,9,23,62,161,410,1031,2579,6359,15575,37830,91241,218581,520544,
%T A330453 1232431,2902644,6802178,15866054,36844016,85202436,196251933,
%U A330453 450341874,1029709478,2346409350,5329371142,12066816905,27240224766,61317231288,137643961196
%N A330453 Number of strict multiset partitions of multiset partitions of integer partitions of n.
%C A330453 Number of sets of nonempty multisets of nonempty multisets of positive integers with total sum n.
%H A330453 Alois P. Heinz, <a href="/A330453/b330453.txt">Table of n, a(n) for n = 0..3853</a>
%F A330453 Weigh transform of A001970. The weigh transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} (1 + x^i)^s_i.
%e A330453 The a(4) = 23 partitions:
%e A330453   ((4))  ((22))    ((31))      ((211))        ((1111))
%e A330453          ((2)(2))  ((1)(3))    ((1)(21))      ((1)(111))
%e A330453                    ((1))((3))  ((2)(11))      ((11)(11))
%e A330453                                ((1)(1)(2))    ((1))((111))
%e A330453                                ((1))((21))    ((1)(1)(11))
%e A330453                                ((2))((11))    ((1))((1)(11))
%e A330453                                ((1))((1)(2))  ((1)(1)(1)(1))
%e A330453                                ((2))((1)(1))  ((11))((1)(1))
%e A330453                                               ((1))((1)(1)(1))
%p A330453 with(numtheory): with(combinat):
%p A330453 b:= proc(n) option remember; `if`(n=0, 1, add(add(d*
%p A330453       numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n)
%p A330453     end:
%p A330453 a:= proc(n) a(n):= `if`(n<2, 1, add(a(n-k)*add(b(d)
%p A330453       *d*(-1)^(k/d+1), d=divisors(k)), k=1..n)/n)
%p A330453     end:
%p A330453 seq(a(n), n=0..32);  # _Alois P. Heinz_, Jul 18 2021
%t A330453 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
%t A330453 Table[Length[Select[ppl[n,3],UnsameQ@@#&]],{n,0,10}]
%Y A330453 The not necessarily strict case is A007713.
%Y A330453 Cf. A001055, A001970, A050336, A050343, A089259, A261049, A271619, A316980, A318566, A323787-A323795, A330452-A330459, A330461, A330463.
%K A330453 nonn
%O A330453 0,3
%A A330453 _Gus Wiseman_, Dec 17 2019