A330458 Number of multisets of nonempty sets of nonempty multisets of positive integers with total sum n.
1, 1, 3, 8, 20, 49, 123, 292, 701, 1653, 3874, 8977, 20711, 47344, 107692, 243382, 547264, 1224048, 2725483, 6040796, 13334354, 29316445, 64215841, 140159357, 304890958, 661097630, 1429083295, 3080159882, 6620188725, 14190463947, 30338920339, 64702805452
Offset: 0
Keywords
Examples
The a(4) = 20 partitions: ((4)) ((22)) ((13)) ((112)) ((1111)) ((2))((2)) ((1)(3)) ((1)(12)) ((1)(111)) ((1))((3)) ((2)(11)) ((1))((111)) ((1))((12)) ((11))((11)) ((2))((11)) ((1))((1)(11)) ((1))((1)(2)) ((1))((1))((11)) ((1))((1))((2)) ((1))((1))((1))((1))
Crossrefs
Programs
-
Mathematica
ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; Table[Length[Select[ppl[n,3],And@@UnsameQ@@@#&]],{n,0,10}]
Formula
Euler transform of A261049. The Euler transform of a sequence (s_1, s_2, ...) is the sequence with generating function Product_{i > 0} 1/(1 - x^i)^s_i.