This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330459 #10 Feb 28 2020 12:55:19 %S A330459 1,1,1,4,6,11,26,42,78,148,280,481,867,1569,2742,4933,8493,14857, %T A330459 25925,44877,77022,132511,226449,385396,657314,1111115,1875708, %U A330459 3157379,5309439,8885889,14861478,24760339,41162971,68328959,113099231,186926116,308230044 %N A330459 Number of set partitions of set-systems with total sum n. %C A330459 Number of sets of disjoint nonempty sets of nonempty sets of positive integers with total sum n. %H A330459 Andrew Howroyd, <a href="/A330459/b330459.txt">Table of n, a(n) for n = 0..500</a> %F A330459 a(n) = Sum_k A330462(n,k) * A000110(k). %e A330459 The a(6) = 26 partitions: %e A330459 ((6)) ((15)) ((123)) ((1)(2)(12)) %e A330459 ((24)) ((1)(14)) ((1))((2)(12)) %e A330459 ((1)(5)) ((1)(23)) ((12))((1)(2)) %e A330459 ((2)(4)) ((2)(13)) ((2))((1)(12)) %e A330459 ((1))((5)) ((3)(12)) ((1))((2))((12)) %e A330459 ((2))((4)) ((1))((14)) %e A330459 ((1))((23)) %e A330459 ((1)(2)(3)) %e A330459 ((2))((13)) %e A330459 ((3))((12)) %e A330459 ((1))((2)(3)) %e A330459 ((2))((1)(3)) %e A330459 ((3))((1)(2)) %e A330459 ((1))((2))((3)) %t A330459 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; %t A330459 Table[Length[Select[ppl[n,3],And[UnsameQ@@Join@@#,And@@UnsameQ@@@Join@@#]&]],{n,0,10}] %o A330459 (PARI) \\ here L is A000009 and BellP is A000110 as series. %o A330459 L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))} %o A330459 BellP(n)={serlaplace(exp( exp(x + O(x*x^n)) - 1))} %o A330459 seq(n)={my(c=L(n), b=BellP(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c, k)))); vector(#v, n, my(r=v[n]); sum(k=0, n-1, polcoeff(b,k)*polcoef(r,k)))} \\ _Andrew Howroyd_, Dec 29 2019 %Y A330459 Cf. A007713, A050342, A050343, A279375, A279785, A283877, A294617, A330460, A330462, A323787-A323795, A330452-A330459. %K A330459 nonn %O A330459 0,4 %A A330459 _Gus Wiseman_, Dec 17 2019 %E A330459 Terms a(18) and beyond from _Andrew Howroyd_, Dec 29 2019