cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330460 Triangle read by rows where T(n,k) is the number of set partitions with k blocks and total sum n.

This page as a plain text file.
%I A330460 #18 May 16 2021 12:24:54
%S A330460 1,0,1,0,1,0,0,2,1,0,0,2,1,0,0,0,3,2,0,0,0,0,4,5,1,0,0,0,0,5,6,1,0,0,
%T A330460 0,0,0,6,9,2,0,0,0,0,0,0,8,13,3,0,0,0,0,0,0,0,10,23,10,1,0,0,0,0,0,0,
%U A330460 0,12,27,11,1,0,0,0,0,0,0,0,0,15,40,19,2,0,0,0,0,0,0,0,0
%N A330460 Triangle read by rows where T(n,k) is the number of set partitions with k blocks and total sum n.
%H A330460 Andrew Howroyd, <a href="/A330460/b330460.txt">Table of n, a(n) for n = 0..1325</a> (rows n=0..50)
%F A330460 T(n,k) = Sum_{k <= i <= n} A060016(n,i) * A008277(i,k).
%F A330460 For n > 0, T(n,2) = Sum_{k = 1..n} (2^(k - 1) -1) * A060016(n,k).
%e A330460 Triangle begins:
%e A330460   1
%e A330460   0  1
%e A330460   0  1  0
%e A330460   0  2  1  0
%e A330460   0  2  1  0  0
%e A330460   0  3  2  0  0  0
%e A330460   0  4  5  1  0  0  0
%e A330460   0  5  6  1  0  0  0  0
%e A330460   0  6  9  2  0  0  0  0  0
%e A330460   0  8 13  3  0  0  0  0  0  0
%e A330460   0 10 23 10  1  0  0  0  0  0  0
%e A330460   0 12 27 11  1  0  0  0  0  0  0  0
%e A330460   0 15 40 19  2  0  0  0  0  0  0  0  0
%e A330460 Row n = 8 counts the following set partitions:
%e A330460   {{8}}      {{1},{7}}    {{1},{2},{5}}
%e A330460   {{3,5}}    {{2},{6}}    {{1},{3},{4}}
%e A330460   {{2,6}}    {{3},{5}}
%e A330460   {{1,7}}    {{1},{3,4}}
%e A330460   {{1,3,4}}  {{1},{2,5}}
%e A330460   {{1,2,5}}  {{2},{1,5}}
%e A330460              {{3},{1,4}}
%e A330460              {{4},{1,3}}
%e A330460              {{5},{1,2}}
%p A330460 b:= proc(n, i, k) option remember; `if`(i*(i+1)/2<n, 0,
%p A330460       `if`(n=0, x^k, b(n, i-1, k) +(t-> k*
%p A330460          b(n-i, t, k)+b(n-i, t, k+1))(min(n-i, i-1))))
%p A330460     end:
%p A330460 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2, 0)):
%p A330460 seq(T(n), n=0..15);  # _Alois P. Heinz_, Dec 29 2019
%t A330460 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]];
%t A330460 Table[Length[Select[ppl[n,2],Length[#]==k&&And[UnsameQ@@#,UnsameQ@@Join@@#]&]],{n,0,10},{k,0,n}]
%t A330460 (* Second program: *)
%t A330460 b[n_, i_, k_] := b[n, i, k] = If[i(i+1)/2 < n, 0, If[n == 0, x^k, b[n, i-1, k] + Function[t, k*b[n-i, t, k] + b[n-i, t, k + 1]][Min[n-i, i-1]]]];
%t A330460 T[n_] := PadRight[CoefficientList[b[n, n, 0], x], n + 1];
%t A330460 T /@ Range[0, 15] // Flatten (* _Jean-François Alcover_, May 16 2021, after _Alois P. Heinz_ *)
%o A330460 (PARI)
%o A330460 A(n)={my(v=Vec(prod(k=1, n, 1 + x^k*y + O(x*x^n)))); vector(#v, n, my(p=v[n]); vector(n, k, sum(i=k, n, polcoef(p,i-1)*stirling(i-1, k-1, 2))))}
%o A330460 {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ _Andrew Howroyd_, Dec 29 2019
%Y A330460 Row sums are A294617.
%Y A330460 Column k = 1 is A000009 (n > 0).
%Y A330460 Cf. A000110, A008277, A050342, A060016, A072706, A270995, A271619, A279375, A279785, A326701, A330459, A330462, A330463, A330759.
%K A330460 nonn,tabl
%O A330460 0,8
%A A330460 _Gus Wiseman_, Dec 18 2019