This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330461 #9 Jan 07 2020 13:03:56 %S A330461 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,3,4,4,1,1,1,1,4,7,7,5,1, %T A330461 1,1,1,5,12,14,11,6,1,1,1,1,6,19,29,25,16,7,1,1,1,1,8,30,57,60,41,22, %U A330461 8,1,1,1,1,10,49,110,141,111,63,29,9,1,1,1 %N A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n. %H A330461 Andrew Howroyd, <a href="/A330461/b330461.txt">Table of n, a(n) for n = 0..1325</a> %F A330461 Column k is the k-th weigh transform of the all-ones sequence. The weigh transform of a sequence b has generating function Product_{i > 0} (1 + x^i)^b(i). %e A330461 Array begins: %e A330461 k=0 k=1 k=2 k=3 k=4 k=5 k=6 %e A330461 ----------------------------- %e A330461 n=0: 1 1 1 1 1 1 1 %e A330461 n=1: 1 1 1 1 1 1 1 %e A330461 n=2: 1 1 1 1 1 1 1 %e A330461 n=3: 1 2 3 4 5 6 7 %e A330461 n=4: 1 2 4 7 11 16 22 %e A330461 n=5: 1 3 7 14 25 41 63 %e A330461 n=6: 1 4 12 29 60 111 189 %e A330461 For example, the A(5,3) = 14 partitions are: %e A330461 {{5}} {{1}}{{4}} %e A330461 {{14}} {{2}}{{3}} %e A330461 {{23}} {{1}}{{13}} %e A330461 {{1}{4}} {{2}}{{12}} %e A330461 {{2}{3}} {{1}}{{1}{3}} %e A330461 {{1}{13}} {{2}}{{1}{2}} %e A330461 {{2}{12}} {{1}}{{1}{12}} %t A330461 spl[n_,0]:={n}; %t A330461 spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&]; %t A330461 Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}] %o A330461 (PARI) %o A330461 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)} %o A330461 M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~} %o A330461 { my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ _Andrew Howroyd_, Dec 31 2019 %Y A330461 Columns are A000012 (k = 0), A000009 (k = 1), A050342 (k = 2), A050343 (k = 3), A050344 (k = 4). %Y A330461 The non-strict version is A290353. %Y A330461 Cf. A001970, A004111, A007713, A060016, A273873, A279375, A279785, A294617, A306186, A323718, A323790, A330462. %K A330461 nonn,tabl %O A330461 0,12 %A A330461 _Gus Wiseman_, Dec 18 2019