cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.

This page as a plain text file.
%I A330461 #9 Jan 07 2020 13:03:56
%S A330461 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,3,1,1,1,1,3,4,4,1,1,1,1,4,7,7,5,1,
%T A330461 1,1,1,5,12,14,11,6,1,1,1,1,6,19,29,25,16,7,1,1,1,1,8,30,57,60,41,22,
%U A330461 8,1,1,1,1,10,49,110,141,111,63,29,9,1,1,1
%N A330461 Array read by antidiagonals where A(n,k) is the number of multiset partitions with k levels that are strict at all levels and have total sum n.
%H A330461 Andrew Howroyd, <a href="/A330461/b330461.txt">Table of n, a(n) for n = 0..1325</a>
%F A330461 Column k is the k-th weigh transform of the all-ones sequence. The weigh transform of a sequence b has generating function Product_{i > 0} (1 + x^i)^b(i).
%e A330461 Array begins:
%e A330461        k=0 k=1 k=2 k=3 k=4 k=5 k=6
%e A330461       -----------------------------
%e A330461   n=0:  1   1   1   1   1   1   1
%e A330461   n=1:  1   1   1   1   1   1   1
%e A330461   n=2:  1   1   1   1   1   1   1
%e A330461   n=3:  1   2   3   4   5   6   7
%e A330461   n=4:  1   2   4   7  11  16  22
%e A330461   n=5:  1   3   7  14  25  41  63
%e A330461   n=6:  1   4  12  29  60 111 189
%e A330461 For example, the A(5,3) = 14 partitions are:
%e A330461   {{5}}      {{1}}{{4}}
%e A330461   {{14}}     {{2}}{{3}}
%e A330461   {{23}}     {{1}}{{13}}
%e A330461   {{1}{4}}   {{2}}{{12}}
%e A330461   {{2}{3}}   {{1}}{{1}{3}}
%e A330461   {{1}{13}}  {{2}}{{1}{2}}
%e A330461   {{2}{12}}  {{1}}{{1}{12}}
%t A330461 spl[n_,0]:={n};
%t A330461 spl[n_,k_]:=Select[Join@@Table[Union[Sort/@Tuples[spl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}],UnsameQ@@#&];
%t A330461 Table[Length[spl[n-k,k]],{n,0,10},{k,0,n}]
%o A330461 (PARI)
%o A330461 WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
%o A330461 M(n, k=n)={my(L=List(), v=vector(n,i,1)); listput(L, concat([1], v)); for(j=1, k, v=WeighT(v); listput(L, concat([1], v))); Mat(Col(L))~}
%o A330461 { my(A=M(7)); for(i=1, #A, print(A[i,])) } \\ _Andrew Howroyd_, Dec 31 2019
%Y A330461 Columns are A000012 (k = 0), A000009 (k = 1), A050342 (k = 2), A050343 (k = 3), A050344 (k = 4).
%Y A330461 The non-strict version is A290353.
%Y A330461 Cf. A001970, A004111, A007713, A060016, A273873, A279375, A279785, A294617, A306186, A323718, A323790, A330462.
%K A330461 nonn,tabl
%O A330461 0,12
%A A330461 _Gus Wiseman_, Dec 18 2019