This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330462 #13 Feb 22 2023 10:11:07 %S A330462 1,0,1,0,1,0,0,2,1,0,0,2,2,0,0,0,3,4,0,0,0,0,4,6,2,0,0,0,0,5,11,3,0,0, %T A330462 0,0,0,6,16,8,0,0,0,0,0,0,8,25,15,1,0,0,0,0,0,0,10,35,28,4,0,0,0,0,0, %U A330462 0,0,12,52,46,9,0,0,0,0,0,0,0 %N A330462 Triangle read by rows where T(n,k) is the number of k-element sets of nonempty sets of positive integers with total sum n. %H A330462 Andrew Howroyd, <a href="/A330462/b330462.txt">Table of n, a(n) for n = 0..1325</a> (rows n = 0..50) %F A330462 G.f.: Product_{j>=1} (1 + y*x^j)^A000009(j). - _Andrew Howroyd_, Dec 29 2019 %e A330462 Triangle begins: %e A330462 1 %e A330462 0 1 %e A330462 0 1 0 %e A330462 0 2 1 0 %e A330462 0 2 2 0 0 %e A330462 0 3 4 0 0 0 %e A330462 0 4 6 2 0 0 0 %e A330462 0 5 11 3 0 0 0 0 %e A330462 0 6 16 8 0 0 0 0 0 %e A330462 0 8 25 15 1 0 0 0 0 0 %e A330462 0 10 35 28 4 0 0 0 0 0 0 %e A330462 ... %e A330462 Row n = 7 counts the following set-systems: %e A330462 {{7}} {{1},{6}} {{1},{2},{4}} %e A330462 {{1,6}} {{2},{5}} {{1},{2},{1,3}} %e A330462 {{2,5}} {{3},{4}} {{1},{3},{1,2}} %e A330462 {{3,4}} {{1},{1,5}} %e A330462 {{1,2,4}} {{1},{2,4}} %e A330462 {{2},{1,4}} %e A330462 {{2},{2,3}} %e A330462 {{3},{1,3}} %e A330462 {{4},{1,2}} %e A330462 {{1},{1,2,3}} %e A330462 {{1,2},{1,3}} %t A330462 ppl[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Union[Sort/@Tuples[ppl[#,k-1]&/@ptn]],{ptn,IntegerPartitions[n]}]]; %t A330462 Table[Length[Select[ppl[n,2],And[UnsameQ@@#,And@@UnsameQ@@@#,Length[#]==k]&]],{n,0,10},{k,0,n}] %o A330462 (PARI) %o A330462 L(n)={eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))} %o A330462 A(n)={my(c=L(n), v=Vec(prod(k=1, n, (1 + x^k*y + O(x*x^n))^polcoef(c,k)))); vector(#v, n, Vecrev(v[n],n))} %o A330462 {my(T=A(12)); for(n=1, #T, print(T[n]))} \\ _Andrew Howroyd_, Dec 29 2019 %Y A330462 Row sums are A050342. %Y A330462 Column k = 1 is A000009. %Y A330462 Cf. A001970, A050343, A063834, A270995, A271619, A279375, A279785, A283877, A294617, A326031, A330456, A330460, A330463, A360764. %K A330462 nonn,tabl %O A330462 0,8 %A A330462 _Gus Wiseman_, Dec 18 2019