cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330466 Irregular triangle read by rows: T(n,k) is the number of parts in the partition of n into k consecutive parts that differ by 2, n >= 1, k >= 1, and the first element of column k is in row k^2.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 0, 1, 2, 1, 0, 3, 1, 2, 0, 1, 0, 0, 1, 2, 3, 1, 0, 0, 1, 2, 0, 1, 0, 3, 1, 2, 0, 4, 1, 0, 0, 0, 1, 2, 3, 0, 1, 0, 0, 0, 1, 2, 0, 4, 1, 0, 3, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 2, 3, 4, 1, 0, 0, 0, 5, 1, 2, 0, 0, 0, 1, 0, 3, 0, 0, 1, 2, 0, 4, 0, 1, 0, 0, 0, 0, 1, 2, 3, 0, 5, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Apr 30 2020

Keywords

Comments

Since the trivial partition n is counted, so T(n,1) = 1.
This is an irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k's interleaved with k-1 zeros, and the first element of column k is in row k^2.
Conjecture: row sums give A066839.

Examples

			Triangle begins (rows 1..25):
1;
1;
1;
1, 2;
1, 0;
1, 2;
1, 0;
1, 2;
1, 0, 3;
1, 2, 0;
1, 0, 0;
1, 2, 3;
1, 0, 0;
1, 2, 0;
1, 0, 3;
1, 2, 0, 4;
1, 0, 0, 0;
1, 2, 3, 0;
1, 0, 0, 0;
1, 2, 0, 4;
1, 0, 3, 0;
1, 2, 0, 0;
1, 0, 0, 0;
1, 2, 3, 4;
1, 0, 0, 0, 5;
...
For n = 16 there are three partitions of 16 into consecutive parts that differ by 2, including 16 as a partition. They are [16], [9, 7] and [7, 5, 3, 1]. The number of parts of these partitions are 1, 2 and 4 respectively, so the 16th row of the triangle is [1, 2, 0, 4].
		

Crossrefs

Other triangles of the same family are A127093 and A285914.

Formula

T(n,k) = k*A303300(n,k).