This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330467 #12 Dec 29 2020 16:38:54 %S A330467 1,1,4,18,154,1614,23733,396190,8066984,183930948,4811382339, %T A330467 138718632336,4451963556127,155416836338920,5920554613563841, %U A330467 242873491536944706,10725017764009207613,505671090907469848248,25415190929321149684700,1354279188424092012064226 %N A330467 Number of series-reduced rooted trees whose leaves are multisets whose multiset union is a strongly normal multiset of size n. %C A330467 A multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. %C A330467 Also the number of different colorings of phylogenetic trees with n labels using strongly normal multisets of colors. A phylogenetic tree is a series-reduced rooted tree whose leaves are (usually disjoint) sets. %e A330467 The a(3) = 18 trees: %e A330467 {1,1,1} {1,1,2} {1,2,3} %e A330467 {{1},{1,1}} {{1},{1,2}} {{1},{2,3}} %e A330467 {{1},{1},{1}} {{2},{1,1}} {{2},{1,3}} %e A330467 {{1},{{1},{1}}} {{1},{1},{2}} {{3},{1,2}} %e A330467 {{1},{{1},{2}}} {{1},{2},{3}} %e A330467 {{2},{{1},{1}}} {{1},{{2},{3}}} %e A330467 {{2},{{1},{3}}} %e A330467 {{3},{{1},{2}}} %t A330467 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A330467 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330467 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330467 multing[t_,n_]:=Array[(t+#-1)/#&,n,1,Times]; %t A330467 amemo[m_]:=amemo[m]=1+Sum[Product[multing[amemo[s[[1]]],Length[s]],{s,Split[c]}],{c,Select[mps[m],Length[#]>1&]}]; %t A330467 Table[Sum[amemo[m],{m,strnorm[n]}],{n,0,5}] %o A330467 (PARI) \\ See links in A339645 for combinatorial species functions. %o A330467 cycleIndexSeries(n)={my(v=vector(n), p=sExp(x*sv(1) + O(x*x^n))); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sExp(x*Ser(v[1..n])), n ) + polcoef(p, n)); 1 + x*Ser(v)} %o A330467 StronglyNormalLabelingsSeq(cycleIndexSeries(15)) \\ _Andrew Howroyd_, Dec 28 2020 %Y A330467 The singleton-reduced version is A316652. %Y A330467 The unlabeled version is A330465. %Y A330467 Not requiring weakly decreasing multiplicities gives A330469. %Y A330467 The case where the leaves are sets is A330625. %Y A330467 Cf. A000311, A000669, A004114, A005121, A005804, A141268, A292504, A292505, A318812, A318849, A319312, A330471, A330475. %K A330467 nonn %O A330467 0,3 %A A330467 _Gus Wiseman_, Dec 22 2019 %E A330467 Terms a(10) and beyond from _Andrew Howroyd_, Dec 28 2020