This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330470 #15 Dec 21 2020 19:33:06 %S A330470 1,1,2,7,39,236,1836,16123,162008,1802945,22012335,291290460, %T A330470 4144907830,62986968311,1016584428612,17344929138791,311618472138440, %U A330470 5875109147135658,115894178676866576,2385755803919949337,51133201045333895149,1138659323863266945177,26296042933904490636133 %N A330470 Number of non-isomorphic series/singleton-reduced rooted trees on a multiset of size n. %C A330470 A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part). %e A330470 Non-isomorphic representatives of the a(4) = 39 trees, with singleton leaves (x) replaced by just x: %e A330470 (1111) (1112) (1122) (1123) (1234) %e A330470 (1(111)) (1(112)) (1(122)) (1(123)) (1(234)) %e A330470 (11(11)) (11(12)) (11(22)) (11(23)) (12(34)) %e A330470 ((11)(11)) (12(11)) (12(12)) (12(13)) ((12)(34)) %e A330470 (1(1(11))) (2(111)) ((11)(22)) (2(113)) (1(2(34))) %e A330470 ((11)(12)) (1(1(22))) (23(11)) %e A330470 (1(1(12))) ((12)(12)) ((11)(23)) %e A330470 (1(2(11))) (1(2(12))) (1(1(23))) %e A330470 (2(1(11))) ((12)(13)) %e A330470 (1(2(13))) %e A330470 (2(1(13))) %e A330470 (2(3(11))) %o A330470 (PARI) \\ See links in A339645 for combinatorial species functions. %o A330470 cycleIndexSeries(n)={my(v=vector(n)); v[1]=sv(1); for(n=2, #v, v[n] = polcoef( sEulerT(x*Ser(v[1..n])), n )); x*Ser(v)} %o A330470 InequivalentColoringsSeq(cycleIndexSeries(15)) \\ _Andrew Howroyd_, Dec 11 2020 %Y A330470 The case with all atoms equal or all atoms different is A000669. %Y A330470 Not requiring singleton-reduction gives A330465. %Y A330470 Labeled versions are A316651 (normal orderless) and A330471 (strongly normal). %Y A330470 The case where the leaves are sets is A330626. %Y A330470 Row sums of A339645. %Y A330470 Cf. A000311, A005121, A005804, A141268, A213427, A292504, A292505, A318812, A318848, A318849, A330467, A330469, A330474, A330624. %K A330470 nonn %O A330470 0,3 %A A330470 _Gus Wiseman_, Dec 22 2019 %E A330470 Terms a(7) and beyond from _Andrew Howroyd_, Dec 11 2020