A330471 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n.
1, 1, 2, 9, 69, 623, 7803, 110476, 1907428
Offset: 0
Examples
The a(0) = 1 through a(3) = 9 trees: () (1) (11) (111) (12) (112) (123) ((1)(11)) ((1)(12)) ((1)(23)) ((2)(11)) ((2)(13)) ((3)(12)) The a(4) = 69 trees, with singleton leaves (x) replaced by just x: (1111) (1112) (1122) (1123) (1234) (1(111)) (1(112)) (1(122)) (1(123)) (1(234)) (11(11)) (11(12)) (11(22)) (11(23)) (12(34)) ((11)(11)) (12(11)) (12(12)) (12(13)) (13(24)) (1(1(11))) (2(111)) (2(112)) (13(12)) (14(23)) ((11)(12)) (22(11)) (2(113)) (2(134)) (1(1(12))) ((11)(22)) (23(11)) (23(14)) (1(2(11))) (1(1(22))) (3(112)) (24(13)) (2(1(11))) ((12)(12)) ((11)(23)) (3(124)) (1(2(12))) (1(1(23))) (34(12)) (2(1(12))) ((12)(13)) (4(123)) (2(2(11))) (1(2(13))) ((12)(34)) (1(3(12))) (1(2(34))) (2(1(13))) ((13)(24)) (2(3(11))) (1(3(24))) (3(1(12))) ((14)(23)) (3(2(11))) (1(4(23))) (2(1(34))) (2(3(14))) (2(4(13))) (3(1(24))) (3(2(14))) (3(4(12))) (4(1(23))) (4(2(13))) (4(3(12)))
Crossrefs
Programs
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; mtot[m_]:=Prepend[Join@@Table[Tuples[mtot/@p],{p,Select[mps[m],Length[#]>1&&Length[#]
Comments