This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330472 #9 Jan 17 2023 18:22:22 %S A330472 1,0,1,0,4,2,0,10,8,3,0,33,48,18,5,0,91,204,118,32,7,0,298,959,743, %T A330472 266,58,11,0,910,4193,4334,1927,519,94,15,0,3017,18947,25305,13992, %U A330472 4407,966,154,22,0,9945,84798,145033,97947,36410,9023,1679,236,30 %N A330472 Triangle read by rows where T(n,k) is the number of non-isomorphic k-element multisets of nonempty multisets of nonempty multisets (all finite). %H A330472 Andrew Howroyd, <a href="/A330472/b330472.txt">Table of n, a(n) for n = 0..350</a> %e A330472 Triangle begins: %e A330472 1 %e A330472 0 1 %e A330472 0 4 2 %e A330472 0 10 8 3 %e A330472 0 33 48 18 5 %e A330472 0 91 204 118 32 7 %e A330472 0 298 959 743 266 58 11 %e A330472 For example, row n = 3 counts the following multiset partitions: %e A330472 {{111}} {{1}}{{11}} {{1}}{{1}}{{1}} %e A330472 {{112}} {{1}}{{12}} {{1}}{{1}}{{2}} %e A330472 {{123}} {{1}}{{23}} {{1}}{{2}}{{3}} %e A330472 {{1}{11}} {{2}}{{11}} %e A330472 {{1}{12}} {{1}}{{1}{1}} %e A330472 {{1}{23}} {{1}}{{1}{2}} %e A330472 {{2}{11}} {{1}}{{2}{3}} %e A330472 {{1}{1}{1}} {{2}}{{1}{1}} %e A330472 {{1}{1}{2}} %e A330472 {{1}{2}{3}} %o A330472 (PARI) \\ See links in A339645 for combinatorial species functions. %o A330472 ColGf(k,n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(A,k,x)*x^k + O(x*x^n), sExp(A)) ))} %o A330472 M(n,m=n)={Mat(vector(m+1, k, Col(ColGf(k-1,n), -(n+1))))} %o A330472 { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ _Andrew Howroyd_, Jan 17 2023 %Y A330472 Row sums are A318566. %Y A330472 Column k = 1 is A007716 (for n > 0). %Y A330472 Column k = n is A000041. %Y A330472 Partitions of partitions of partitions are A007713. %Y A330472 Twice-factorizations are A050336. %Y A330472 If this is the 3-dimensional version, the 2-dimensional version is A317533. %Y A330472 See A330473 for a variation. %Y A330472 Cf. A001055, A050336, A061260, A269134, A292504, A306186, A317791. %K A330472 nonn,tabl %O A330472 0,5 %A A330472 _Gus Wiseman_, Dec 19 2019 %E A330472 Terms a(21) and beyond from _Andrew Howroyd_, Jan 17 2023