This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330473 #8 Jan 18 2023 12:19:31 %S A330473 1,0,1,0,2,4,0,3,8,10,0,5,28,38,33,0,7,56,146,152,91,0,11,138,474,786, %T A330473 628,298,0,15,268,1388,3117,3808,2486,910,0,22,570,3843,11830,19147, %U A330473 18395,9986,3017,0,30,1072,10094,40438,87081,110164,86388,39889,9945 %N A330473 Regular triangle where T(n,k) is the number of non-isomorphic multiset partitions of k-element multiset partitions of multisets of size n. %C A330473 As an alternative description, T(n,k) is the number of non-isomorphic multisets of nonempty multisets of nonempty multisets with n leaves whose multiset union consists of k multisets. %H A330473 Andrew Howroyd, <a href="/A330473/b330473.txt">Table of n, a(n) for n = 0..350</a> %e A330473 Triangle begins: %e A330473 1 %e A330473 0 1 %e A330473 0 2 4 %e A330473 0 3 8 10 %e A330473 0 5 28 38 33 %e A330473 0 7 56 146 152 91 %e A330473 0 11 138 474 786 628 298 %e A330473 For example, row n = 3 counts the following multiset partitions: %e A330473 {{111}} {{1}{11}} {{1}{1}{1}} %e A330473 {{112}} {{1}{12}} {{1}{1}{2}} %e A330473 {{123}} {{1}{23}} {{1}{2}{3}} %e A330473 {{2}{11}} {{1}}{{1}{1}} %e A330473 {{1}}{{11}} {{1}}{{1}{2}} %e A330473 {{1}}{{12}} {{1}}{{2}{3}} %e A330473 {{1}}{{23}} {{2}}{{1}{1}} %e A330473 {{2}}{{11}} {{1}}{{1}}{{1}} %e A330473 {{1}}{{1}}{{2}} %e A330473 {{1}}{{2}}{{3}} %o A330473 (PARI) \\ See links in A339645 for combinatorial species functions. %o A330473 ColGf(k, n)={my(A=symGroupSeries(n)); OgfSeries(sCartProd(sExp(A), sSubstOp(polcoef(sExp(A), k, x)*x^k + O(x*x^n), A) ))} %o A330473 M(n, m=n)={Mat(vector(m+1, k, Col(ColGf(k-1, n), -(n+1))))} %o A330473 { my(A=M(10)); for(n=1, #A, print(A[n, 1..n])) } \\ _Andrew Howroyd_, Jan 18 2023 %Y A330473 Row sums are A318566. %Y A330473 Column k = 1 is A000041 (for n > 0). %Y A330473 Column k = n is A007716. %Y A330473 Partitions of partitions of partitions are A007713. %Y A330473 Twice-factorizations are A050336. %Y A330473 The 2-dimensional version is A317533. %Y A330473 See A330472 for a variation. %Y A330473 Cf. A001055, A050336, A061260, A269134, A292504, A306186, A317791. %K A330473 nonn,tabl %O A330473 0,5 %A A330473 _Gus Wiseman_, Dec 20 2019 %E A330473 Terms a(36) and beyond from _Andrew Howroyd_, Jan 18 2023