This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330474 #8 Apr 27 2020 09:44:24 %S A330474 1,1,2,7,48,424 %N A330474 Number of non-isomorphic balanced reduced multisystems of weight n. %C A330474 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. The weight of an atom is 1, while the weight of a multiset is the sum of weights of its elements. %e A330474 Non-isomorphic representatives of the a(3) = 7 multisystems: %e A330474 {1,1,1} %e A330474 {1,1,2} %e A330474 {1,2,3} %e A330474 {{1},{1,1}} %e A330474 {{1},{1,2}} %e A330474 {{1},{2,3}} %e A330474 {{2},{1,1}} %e A330474 Non-isomorphic representatives of the a(4) = 48 multisystems: %e A330474 {1,1,1,1} {{1},{1,1,1}} {{{1}},{{1},{1,1}}} %e A330474 {1,1,1,2} {{1,1},{1,1}} {{{1,1}},{{1},{1}}} %e A330474 {1,1,2,2} {{1},{1,1,2}} {{{1}},{{1},{1,2}}} %e A330474 {1,1,2,3} {{1,1},{1,2}} {{{1,1}},{{1},{2}}} %e A330474 {1,2,3,4} {{1},{1,2,2}} {{{1}},{{1},{2,2}}} %e A330474 {{1,1},{2,2}} {{{1,1}},{{2},{2}}} %e A330474 {{1},{1,2,3}} {{{1}},{{1},{2,3}}} %e A330474 {{1,1},{2,3}} {{{1,1}},{{2},{3}}} %e A330474 {{1,2},{1,2}} {{{1}},{{2},{1,1}}} %e A330474 {{1,2},{1,3}} {{{1,2}},{{1},{1}}} %e A330474 {{1},{2,3,4}} {{{1}},{{2},{1,2}}} %e A330474 {{1,2},{3,4}} {{{1,2}},{{1},{2}}} %e A330474 {{2},{1,1,1}} {{{1}},{{2},{1,3}}} %e A330474 {{2},{1,1,3}} {{{1,2}},{{1},{3}}} %e A330474 {{1},{1},{1,1}} {{{1}},{{2},{3,4}}} %e A330474 {{1},{1},{1,2}} {{{1,2}},{{3},{4}}} %e A330474 {{1},{1},{2,2}} {{{2}},{{1},{1,1}}} %e A330474 {{1},{1},{2,3}} {{{2}},{{1},{1,3}}} %e A330474 {{1},{2},{1,1}} {{{2}},{{3},{1,1}}} %e A330474 {{1},{2},{1,2}} {{{2,3}},{{1},{1}}} %e A330474 {{1},{2},{1,3}} %e A330474 {{1},{2},{3,4}} %e A330474 {{2},{3},{1,1}} %Y A330474 Labeled versions are A330475 (strongly normal) and A330655 (normal). %Y A330474 The case where the atoms are all different is A318813. %Y A330474 The case where the atoms are all equal is (also) A318813. %Y A330474 The labeled case of set partitions is A005121. %Y A330474 The labeled case of integer partitions is A330679. %Y A330474 The case of maximal depth is A330663. %Y A330474 The version where leaves are sets (as opposed to multisets) is A330668. %Y A330474 Cf. A000311, A000669, A001678, A002846, A004114, A007716, A048816, A213427, A306186, A320154, A320160, A330470, A330666. %K A330474 nonn,more %O A330474 0,3 %A A330474 _Gus Wiseman_, Dec 26 2019