cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330477 Semiprimes (A001358) p*q such that p*q+p+q is also a semiprime.

Original entry on oeis.org

9, 22, 25, 39, 62, 69, 77, 87, 91, 94, 95, 106, 115, 119, 121, 122, 133, 134, 142, 146, 159, 183, 187, 202, 213, 214, 218, 219, 226, 235, 237, 249, 253, 259, 262, 265, 274, 287, 289, 291, 299, 303, 305, 309, 314, 335, 362, 381, 386, 393, 403, 411, 417, 422, 446, 458, 469, 473, 489, 501, 502, 505
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Dec 15 2019

Keywords

Examples

			a(3) = 25 is a member because 25 = 5*5 and 25+5+5 = 5*7 is also a semiprime.
		

Crossrefs

Cf. A001358.
Contains A108570.

Programs

  • Maple
    N:= 1000:
    Primes:= select(isprime, [2,seq(i,i=3..N)]):
    SP:= sort([seq(seq([p,q],q=select(t -> t >= p and p*t<=N, Primes)),p=Primes)],(a,b) -> a[1]*a[2] t[1]*t[2], select(t -> numtheory:-bigomega(t[1]*t[2]+t[1]+t[2])=2, SP));
  • Mathematica
    Select[Union@ Apply[Join, Table[Flatten@{p #, Sort[{p, #}]} & /@ Prime@ Range@ PrimePi@ Floor[Max[#]/p], {p, #}]] &@ Prime@ Range@ 97, PrimeOmega[Total@ #] == 2 &][[All, 1]] (* Michael De Vlieger, Dec 15 2019 *)
  • PARI
    issemi(n)=bigomega(n)==2
    list(lim)=my(v=List()); forprime(p=2, sqrtint(lim\=1), forprime(q=p, lim\p, if(issemi(p*q+p+q), listput(v,p*q)))); Set(v) \\ Charles R Greathouse IV, Dec 16 2019
    
  • Python
    from sympy import factorint
    def is_semiprime(n): return sum(e for e in factorint(n).values()) == 2
    def ok(n):
        f = factorint(n, multiple=True)
        if len(f) != 2: return False
        p, q = f
        return len(factorint(p*q + p + q, multiple=True)) == 2
    print(list(filter(ok, range(506)))) # Michael S. Branicky, Sep 22 2021