This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330478 #11 Dec 17 2019 07:47:00 %S A330478 33,1718,4174,7971,8434,11114,13011,14005,16645,17571,29787,30574, %T A330478 43647,58414,63177,65006,69694,71794,87218,95314,97827,104485,125738, %U A330478 126394,150334,193594,196341,198694,200378,201094,212631,212847,227554,239314,243591,254427,276085,277594,288818,291514 %N A330478 Semiprimes A001358(k) = p*q such that p*q+p+q and r*s+r+s are consecutive primes, where A001358(k+1)=r*s. %H A330478 Robert Israel, <a href="/A330478/b330478.txt">Table of n, a(n) for n = 1..1000</a> %e A330478 a(3)=4174=2*2087, the next semiprime is 4178=2*2089, and 4174+2+2087=6263 and 4178+2+2089=6269 are consecutive primes. %p A330478 g:= proc(n) local F; %p A330478 F:= ifactors(n)[2]; %p A330478 if nops(F)=2 then n+F[1][1]+F[2][1] else n+2*F[1][1] fi %p A330478 end proc: %p A330478 SP:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=4..3*10^5)]): %p A330478 nSP:= nops(SP): %p A330478 P1:= map(g, SP): %p A330478 SP[select(t -> isprime(P1[t]) and nextprime(P1[t])=P1[t+1], [$1..nSP-1])]; %t A330478 Select[Partition[Union@ Apply[Join, Table[Flatten@ {p #, Sort[{p, #}]} & /@ Prime@ Range@ PrimePi@ Floor[Max[#]/p], {p, #}]] &@ Prime@ Range[3*10^4], 2, 1], And[AllTrue[{#1, #2}, PrimeQ], #2 == NextPrime@ #1] & @@ {Total@ #1, Total@ #2} & @@ # &][[All, 1, 1]] (* _Michael De Vlieger_, Dec 15 2019 *) %Y A330478 Cf. A001358. %K A330478 nonn %O A330478 1,1 %A A330478 _J. M. Bergot_ and _Robert Israel_, Dec 15 2019