cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330487 Sum of those x(p)*y(p) with p <= n, where p is a prime congruent to 1 modulo 4, and p = x(p)^2 + y(p)^2 with 1 <= x(p) <= y(p).

Original entry on oeis.org

0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 2, 2, 8, 8, 8, 8, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 22, 22, 22, 22, 22, 22, 22, 22, 28, 28, 28, 28, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 62, 62, 62, 62, 62, 62, 62, 62, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 116, 116, 116, 116, 116, 116, 116, 116
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 15 2019

Keywords

Comments

Conjecture: Let b(n) be the sum of all primes p <= n with p == 1 (mod 4). Then a(n)/b(n) = 1/Pi + O(1/sqrt(n)).
A classical theorem of Euler (conjectured by Fermat) states that any prime p == 1 (mod 4) can be written uniquely as x^2 + y^2 with 1 <= x <= y.
For any prime p == 1 (mod 4), we obviously have a(p) > a(p-1). Also, b(n) >= 2*a(n) for all n > 0 since x^2 + y^2 >= 2*x*y.
Via computation we find that a(10^10) = 353452066546904620, b(10^10) = 1110397615780409147, and 3.14157907 < b(10^10)/a(10^10) < 3.14157908.

Examples

			a(5) = 2 since 5 is the first prime congruent to 1 mod 4 and 5 = 1^2 + 2^2 with 1*2 = 2.
a(13) = 8 since 13 = 2^2 + 3^2 is the second prime congruent to 1 mod 4 and 1*2 + 2*3 = 8.
		

Crossrefs

Programs

  • Mathematica
    tab={};Do[m=0;Do[If[PrimeQ[(2x+1)^2+(2y)^2],m=m+(2x+1)*(2y)],{x,0,(Sqrt[n]-1)/2},{y,1,Sqrt[n-(2x+1)^2]/2}];tab=Append[tab,m],{n,1,80}];Print[tab]