cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330489 a(n) is equal to a(n-1) plus (a(n-1) written in base n but interpreted in base n+1), with a(1)=1.

This page as a plain text file.
%I A330489 #25 Jan 24 2020 01:05:50
%S A330489 1,2,4,9,19,41,87,193,427,940,2049,4619,10363,22921,50522,111018,
%T A330489 248438,554112,1232067,2723158,6003186,13446356,30050952,66594552,
%U A330489 147234100,324832999,714046741,1585188074,3511557725,7762753394,17129248715,37693951852,82773271861
%N A330489 a(n) is equal to a(n-1) plus (a(n-1) written in base n but interpreted in base n+1), with a(1)=1.
%e A330489 Given the 5th term in the sequence, the next (6th) term is the 5th term plus the result obtained by taking the 5th term's digits in order in base 6 (the index of the next term) and incrementing the base by 1 without changing the digits.
%e A330489 In this example, a(5) = 19 = 31_6; incrementing the base of 31_6 without changing the digits gives 31_7 = 22, and a(6) = a(5) + 22 = 19 + 22 = 41.
%e A330489 .
%e A330489                       digits
%e A330489                       of a(n-1)
%e A330489              a(n-1)   interpreted
%e A330489              in       in base n+1
%e A330489   n  a(n-1)  base n   = k             k + a(n-1) = a(n)
%e A330489   -  ------  ------   -----------   -------------------
%e A330489   1                                                   1
%e A330489   2     1      1_2      1_3 =   1     1 +   1    =    2
%e A330489   3     2      2_3      2_4 =   2     2 +   2    =    4
%e A330489   4     4     10_4     10_5 =   5     5 +   4    =    9
%e A330489   5     9     14_5     14_6 =  10    10 +   9    =   19
%e A330489   6    19     31_6     31_7 =  22    22 +  19    =   41
%e A330489   7    41     56_7     56_8 =  46    46 +  41    =   87
%e A330489   8    87    127_8    127_9 = 106   106 +  87    =  193
%t A330489 a[n_] := a[n] = a[n-1] + FromDigits[ IntegerDigits[ a[n-1], n], n + 1]; Array[a, 33] (* _Giovanni Resta_, Dec 16 2019 *)
%o A330489 (PARI) lista(nn) = {my(a = 1); print1(a, ", "); for (n=2, nn, a += fromdigits(digits(fromdigits(digits(a, n), n+1))); print1(a, ", "););} \\ _Michel Marcus_, Dec 16 2019
%K A330489 nonn,base,easy
%O A330489 1,2
%A A330489 _Tristan Young_, Dec 15 2019