This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330489 #25 Jan 24 2020 01:05:50 %S A330489 1,2,4,9,19,41,87,193,427,940,2049,4619,10363,22921,50522,111018, %T A330489 248438,554112,1232067,2723158,6003186,13446356,30050952,66594552, %U A330489 147234100,324832999,714046741,1585188074,3511557725,7762753394,17129248715,37693951852,82773271861 %N A330489 a(n) is equal to a(n-1) plus (a(n-1) written in base n but interpreted in base n+1), with a(1)=1. %e A330489 Given the 5th term in the sequence, the next (6th) term is the 5th term plus the result obtained by taking the 5th term's digits in order in base 6 (the index of the next term) and incrementing the base by 1 without changing the digits. %e A330489 In this example, a(5) = 19 = 31_6; incrementing the base of 31_6 without changing the digits gives 31_7 = 22, and a(6) = a(5) + 22 = 19 + 22 = 41. %e A330489 . %e A330489 digits %e A330489 of a(n-1) %e A330489 a(n-1) interpreted %e A330489 in in base n+1 %e A330489 n a(n-1) base n = k k + a(n-1) = a(n) %e A330489 - ------ ------ ----------- ------------------- %e A330489 1 1 %e A330489 2 1 1_2 1_3 = 1 1 + 1 = 2 %e A330489 3 2 2_3 2_4 = 2 2 + 2 = 4 %e A330489 4 4 10_4 10_5 = 5 5 + 4 = 9 %e A330489 5 9 14_5 14_6 = 10 10 + 9 = 19 %e A330489 6 19 31_6 31_7 = 22 22 + 19 = 41 %e A330489 7 41 56_7 56_8 = 46 46 + 41 = 87 %e A330489 8 87 127_8 127_9 = 106 106 + 87 = 193 %t A330489 a[n_] := a[n] = a[n-1] + FromDigits[ IntegerDigits[ a[n-1], n], n + 1]; Array[a, 33] (* _Giovanni Resta_, Dec 16 2019 *) %o A330489 (PARI) lista(nn) = {my(a = 1); print1(a, ", "); for (n=2, nn, a += fromdigits(digits(fromdigits(digits(a, n), n+1))); print1(a, ", "););} \\ _Michel Marcus_, Dec 16 2019 %K A330489 nonn,base,easy %O A330489 1,2 %A A330489 _Tristan Young_, Dec 15 2019