This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330495 #14 Dec 16 2019 11:40:32 %S A330495 1,6,37,307,2858,32060,405830,5777354,91400200,1593023040,30251766840, %T A330495 622016655816,13777150847952,327040289212320,8280040187137200, %U A330495 222696435041359824,6341359225470493440,190609840724078576256,6031297367477133540480,200389374367707186619776 %N A330495 a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * (k-1)! * sigma_2(k), where sigma_2 = A001157. %H A330495 Vaclav Kotesovec, <a href="/A330495/b330495.txt">Table of n, a(n) for n = 1..400</a> %F A330495 E.g.f.: Sum_{k>=1} log(1/(1 - x))^k / (k * (1 - log(1/(1 - x))^k)^2). %F A330495 a(n) ~ n! * zeta(3) * n * exp(n) / (exp(1) - 1)^(n+2). %t A330495 Table[Sum[(-1)^(n-k) * StirlingS1[n, k] * (k-1)! * DivisorSigma[2, k], {k, 1, n}], {n, 1, 20}] %t A330495 nmax = 20; Rest[CoefficientList[Series[Sum[Log[1/(1 - x)]^k/(k*(1 - Log[1/(1 - x)]^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] %o A330495 (PARI) a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1)*(k-1)!*sigma(k, 2)); \\ _Michel Marcus_, Dec 16 2019 %Y A330495 Cf. A330449, A330450, A330493, A330494. %K A330495 nonn %O A330495 1,2 %A A330495 _Vaclav Kotesovec_, Dec 16 2019