A330496 Squared area of quadrilateral with sides prime(n), prime(n+1), prime(n+2), prime(n+3) of odd primes configured as a cyclic quadrilateral. Sequence index starts at n=2 to omit the even prime.
960, 5005, 17017, 46189, 96577, 212625, 394240, 765049, 1361920, 2027025, 3065857, 4385745, 6314112, 8973909, 12780049, 17116960, 21191625, 27428544, 33980800, 42600829, 56581525, 72382464, 89835424, 107972737, 121330189, 135745657, 167244385, 204917929
Offset: 2
Keywords
Examples
a(2)=960 because cyclic quadrilateral with sides 3,5,7,11 has squared area = (3+5+7-11)(3+5-7+11)(3-5+7+11)(-3+5+7+11)/16 = 960.
Links
- Wikipedia, Cyclic quadrilateral.
Programs
-
Mathematica
lst = {}; Do[{a, b, c, d} = {Prime[n], Prime[n+1], Prime[n+2], Prime[n+3]}; A2=(a+b+c-d)(a+b-c+d)(a-b+c+d)(-a+b+c+d)/16; AppendTo[lst, A2], {n, 1, 100}]; lst
Formula
Area K of a cyclic quadrilateral with sides a, b, c, d is given by Brahmagupta's formula K = sqrt((s-a)(s-b)(s-c)(s-d)) where s = (a+b+c+d)/2.
Comments