cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330498 Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k) / k.

This page as a plain text file.
%I A330498 #13 Dec 17 2019 02:38:53
%S A330498 0,1,1,6,24,152,1230,12646,141274,1730984,23920800,379364664,
%T A330498 6766026168,131337466608,2713274041296,59397879195456,
%U A330498 1386647548658496,34745321580075648,934708252265232768,26835517455387452928,815158892950448937984
%N A330498 Expansion of e.g.f. Sum_{k>=1} log(1 + log(1/(1 - x))^k) / k.
%H A330498 Vaclav Kotesovec, <a href="/A330498/b330498.txt">Table of n, a(n) for n = 0..400</a>
%H A330498 Vaclav Kotesovec, <a href="/A330498/a330498.jpg">Graph - the asymptotic ratio</a>
%F A330498 a(n) ~ n! * c / (n * (1 - exp(-1))^n), where c = 0.6931..., conjecture: c = log(2).
%t A330498 nmax = 20; CoefficientList[Series[Sum[Log[1+Log[1/(1-x)]^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!
%Y A330498 Cf. A003713, A330352, A330493, A330499.
%K A330498 nonn
%O A330498 0,4
%A A330498 _Vaclav Kotesovec_, Dec 16 2019