cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330511 Expansion of e.g.f. Sum_{k>=1} arctan(x^k).

This page as a plain text file.
%I A330511 #6 Dec 17 2019 08:40:54
%S A330511 1,2,4,24,144,480,4320,40320,282240,4354560,36288000,319334400,
%T A330511 6706022400,74724249600,1046139494400,20922789888000,376610217984000,
%U A330511 4979623993344000,115242726703104000,2919482409811968000,29194824098119680000
%N A330511 Expansion of e.g.f. Sum_{k>=1} arctan(x^k).
%F A330511 E.g.f.: Sum_{i>=1} Sum_{j>=1} (-1)^(j + 1) * x^(i*(2*j - 1)) / (2*j - 1).
%F A330511 a(n) = (n - 1)! * Sum_{d|n, n/d odd} (-1)^((n/d - 1)/2) * d.
%t A330511 nmax = 21; CoefficientList[Series[Sum[ArcTan[x^k], {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
%t A330511 Table[(n - 1)! DivisorSum[n, (-1)^((n/# - 1)/2) # &, OddQ[n/#] &], {n, 1, 21}]
%o A330511 (PARI) a(n) = (n-1)!*sumdiv(n, d, if (n/d % 2, (-1)^((n/d - 1)/2)*d)); \\ _Michel Marcus_, Dec 17 2019
%Y A330511 Cf. A005359, A050469, A176475, A330504, A330505.
%K A330511 nonn
%O A330511 1,2
%A A330511 _Ilya Gutkovskiy_, Dec 16 2019