A330524 Lexicographically earliest sequence of positive terms such that for any distinct i and j, a(i) | a(j+1) <> a(j) | a(j+1) (where "|" corresponds to binary concatenation, A163621).
1, 1, 2, 1, 3, 2, 2, 3, 3, 4, 1, 4, 2, 4, 3, 5, 2, 5, 3, 6, 1, 8, 1, 9, 2, 8, 2, 9, 3, 7, 4, 4, 5, 4, 8, 3, 8, 4, 9, 4, 10, 2, 11, 2, 13, 1, 10, 4, 11, 3, 9, 5, 8, 5, 9, 6, 4, 15, 2, 16, 1, 16, 2, 17, 2, 18, 4, 16, 3, 10, 5, 10, 6, 5, 11, 4, 17, 3, 11, 5, 14
Offset: 1
Examples
The first terms, alongside their binary representation and that of the concatenation of two consecutive terms, are: n a(n) bin(a(n)) bin(a(n)|a(n+1)) -- ---- --------- ---------------- 1 1 1 11 2 1 1 110 3 2 10 101 4 1 1 111 5 3 11 1110 6 2 10 1010 7 2 10 1011 8 3 11 1111 9 3 11 11100 10 4 100 1001 11 1 1 1100 12 4 100 10010
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Programs
-
PARI
s=0; v=1; for (n=1, 81, print1 (v", "); for (w=1, oo, if (!bittest(s, k=v*2^#binary(w)+w), s+=2^k; v=w; break)))
Comments