cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330541 Triangle read by rows: T(n,k) = gcd {x^n - x^k : x is an integer}, 0 < k < n.

This page as a plain text file.
%I A330541 #28 Aug 12 2022 09:24:02
%S A330541 2,6,2,2,12,2,30,2,24,2,2,60,2,24,2,42,2,120,2,24,2,2,252,2,240,2,24,
%T A330541 2,30,2,504,2,240,2,24,2,2,60,2,504,2,240,2,24,2,66,2,120,2,504,2,240,
%U A330541 2,24,2,2,132,2,240,2,504,2,240,2,24,2
%N A330541 Triangle read by rows: T(n,k) = gcd {x^n - x^k : x is an integer}, 0 < k < n.
%C A330541 All diagonals are weakly increasing, T(n,k) divides T(n+1,k+1), and the m-th diagonal converges to A079612(m).
%C A330541 First column is A027760.
%C A330541 First value where T(n,k) < gcd(2^n - 2^k, 3^n - 3^k) is T(12,1) = 2 < 46.
%C A330541 Maximum value in the n-th row is given by A330542(n).
%H A330541 Peter Kagey, <a href="/A330541/b330541.txt">Table of n, a(n) for n = 2..10012</a> (first 141 rows, flattened)
%H A330541 Mathematics Stack Exchange, <a href="https://math.stackexchange.com/q/3474696/121988">Computing gcd {n^k - n^l : n in Z}</a>.
%e A330541 Table begins:
%e A330541   n\k|  1    2    3    4    5    6    7    8   9  10 11
%e A330541   ---+-------------------------------------------------
%e A330541    2 |  2;
%e A330541    3 |  6,   2;
%e A330541    4 |  2,  12,   2;
%e A330541    5 | 30,   2,  24,   2;
%e A330541    6 |  2,  60,   2,  24,   2;
%e A330541    7 | 42,   2, 120,   2,  24,   2;
%e A330541    8 |  2, 252,   2, 240,   2,  24,   2;
%e A330541    9 | 30,   2, 504,   2, 240,   2,  24,   2;
%e A330541   10 |  2,  60,   2, 504,   2, 240,   2,  24,  2;
%e A330541   11 | 66,   2, 120,   2, 504,   2, 240,   2, 24,  2;
%e A330541   12 |  2, 132,   2, 240,   2, 504,   2, 240,  2, 24, 2.
%Y A330541 Cf. A027760, A079612, A330542.
%K A330541 nonn,tabl
%O A330541 2,1
%A A330541 _Peter Kagey_, Dec 17 2019