A330542
Maximum value in n-th row of A330541.
Original entry on oeis.org
2, 6, 12, 30, 60, 120, 252, 504, 504, 504, 504, 2730, 16380, 32760, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 65520, 131040, 131040, 131040, 131040, 171864, 171864, 171864, 171864, 1919190, 11515140, 69090840
Offset: 2
A330590
Triangle read by rows: T(n,k) is the number of positive integers m dividing x^n - x^k for all integers x, 0 < k < n.
Original entry on oeis.org
2, 4, 2, 2, 6, 2, 8, 2, 8, 2, 2, 12, 2, 8, 2, 8, 2, 16, 2, 8, 2, 2, 18, 2, 20, 2, 8, 2, 8, 2, 24, 2, 20, 2, 8, 2, 2, 12, 2, 24, 2, 20, 2, 8, 2, 8, 2, 16, 2, 24, 2, 20, 2, 8, 2, 2, 12, 2, 20, 2, 24, 2, 20, 2, 8, 2, 32, 2, 16, 2, 24, 2, 24, 2, 20, 2, 8, 2, 2, 72
Offset: 2
Table begins:
n\k| 1 2 3 4 5 6 7 8 9 10 11
---+-------------------------------------------------
2 | 2;
3 | 4, 2;
4 | 2, 6, 2;
5 | 8, 2, 8, 2;
6 | 2, 12, 2, 8, 2;
7 | 8, 2, 16, 2, 8, 2;
8 | 2, 18, 2, 20, 2, 8, 2;
9 | 8, 2, 24, 2, 20, 2, 8, 2;
10 | 2, 12, 2, 24, 2, 20, 2, 8, 2;
11 | 8, 2, 16, 2, 24, 2, 20, 2, 8, 2;
12 | 2, 12, 2, 20, 2, 24, 2, 20, 2, 8, 2.
For n=4 and k=2, the sequence x^4 - x^2 evaluated on the positive (equivalently, negative) integers is 0,12,72,240,600,1260,2352,4032,6480,9900,... and all terms are divisible by the following T(4,2) = 6 positive integers: 1, 2, 3, 4, 6, and 12.
Showing 1-2 of 2 results.
Comments