cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330545 a(1) = 2; thereafter a(n) = a(n-1) + (-1)^(n + 1)*(prime(n) - prime(n - 1) - 1) (where prime(k) denotes the k-th prime).

Original entry on oeis.org

2, 2, 3, 2, 5, 4, 7, 6, 9, 4, 5, 0, 3, 2, 5, 0, 5, 4, 9, 6, 7, 2, 5, 0, 7, 4, 5, 2, 3, 0, 13, 10, 15, 14, 23, 22, 27, 22, 25, 20, 25, 24, 33, 32, 35, 34, 45, 34, 37, 36, 39, 34, 35, 26, 31, 26, 31, 30, 35, 32, 33, 24, 37, 34, 35, 32, 45, 40, 49, 48, 51, 46, 53, 48, 53, 50, 55, 48, 51, 44, 53
Offset: 1

Views

Author

N. J. A. Sloane, Dec 17 2019

Keywords

Comments

a(n) is the column of the Boustrophedon triangle in A330339 that contains prime(n).
If a(n) = 0 then p = prime(n) is a term of A330339, and n is a term of A330546.
Since this has a simple recurrence, it is the key to understanding A330339. However, note that this sequence in turn can be simply expressed in terms of the classic sequence A008347:
a(n) = prime(n) + 1 - 2 * A008347(n) if n is even,
a(n) = 2 * A008347(n) - prime(n) if n is odd.
The sequence that ties all these sequences together is A330547 (q.v.).
First negative term is a(146) = -2.
Note on the links: The illustrations from Angelini and Trump show all the terms 0,1,2,3,4,... (as in A330339), while those of Havermann, Sloane, and Stevenson just show the primes.
The column number mod 4 uniquely determines the residue class of primes mod 4 in that column. If the column number is 0,1,2,3 mod 4 then the primes in that column are 1,3,3,1 respectively (see the "Notes" link). - N. J. A. Sloane, Jan 04 2020
For large n, the graphs of A330545 and A330547 are essentially identical.
Based on the first 10^12 terms, it appears that lim sup |a(n)| is about n^(2/3). This estimate is based on the plots below by Sloane, Trump (the first plot), Havermann (the first plot), and Stevenson (all three plots). - N. J. A. Sloane, Jan 21 2020

Crossrefs

Programs

Formula

G.f.: G(-x)*(x+1)/(x-1), where G(x) = 2*x + 2*x^2 +3*x^3 + 4*x^4 + 7*x^5 + ... is the g.f. for A014692, {prime(n) - (n-1): n >= 1}.

Extensions

Keyword nonn changed to sign by Hans Havermann, Dec 27 2019