cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330559 a(n) = (number of primes p <= prime(n) with Delta(p) == 2 (mod 4)) - (number of primes p <= prime(n) with Delta(p) == 0 (mod 4)), where Delta(p) = nextprime(p) - p.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4, 3, 4, 5, 6, 7, 6, 7, 8, 7, 8, 7, 6, 7, 6, 7, 6, 7, 6, 7, 8, 9, 10, 11, 12, 11, 12, 13, 14, 15, 16, 15, 16, 15, 14, 13, 14, 13, 14, 15, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 22, 23, 22, 23, 24, 25, 26, 25, 26, 25, 26, 27, 26, 27, 26, 25, 24, 25, 26, 27, 28, 29, 28
Offset: 1

Views

Author

N. J. A. Sloane, Dec 30 2019

Keywords

Comments

Equals A330560 - A330561.
Since Delta(prime(n)) grows roughly like log n, this probably changes sign infinitely often. When is the next time a(n) is zero, or the first time a(n) < 0 (if these values exist)?
Let s = A024675, the interprimes. For each n let E(n) = number of even terms of s that are <= n, and let O(n) = number of odd terms of s that are <= n. Then a(n+1) = E(n) - O(n). That is, as we progress through s, the number of evens stays greater than the number of odds. - Clark Kimberling, Feb 26 2024

Examples

			n=6: prime(6) = 13, primes p <= 13 with Delta(p) == 2 (mod 4) are 3,5,11; primes p <= 13 with Delta(p) == 0 (mod 4) are 7,13; so a(6) = 3-2 = 1.
		

Crossrefs

Sequences related to the differences between successive primes: A001223 (Delta(p)), A028334, A080378, A104120, A330556, A330557, A330558, A330560, A330561.

Programs

  • Mathematica
    Join[{0}, Accumulate[Mod[Differences[Prime[Range[2, 100]]], 4] - 1]] (* Paolo Xausa, Feb 05 2024 *)