This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330570 #22 Apr 19 2024 03:29:14 %S A330570 1,10,19,55,64,145,154,254,290,371,380,704,713,794,875,1100,1109,1433, %T A330570 1442,1766,1847,1928,1937,2837,2873,2954,3054,3378,3387,4116,4125, %U A330570 4566,4647,4728,4809,6105,6114,6195,6276,7176,7185,7914,7923,8247,8571,8652,8661,10686,10722,11046,11127,11451,11460,12360 %N A330570 Partial sums of A097988 (d_3(n)^2). %C A330570 This and the following sequences (and continuing in A331071) were inspired by the papers of Hooley, Indlekofer, Motohashi, Redmond, Titchmarsh, etc. %H A330570 Seiichi Manyama, <a href="/A330570/b330570.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..5000 from Vincenzo Librandi) %H A330570 V. C. Harris and M. V. Subbarao, <a href="https://doi.org/10.1216/RMJ-1985-15-2-399">On the divisor sum function</a>, The Rocky Mountain Journal of Mathematics, Vol. 15, No. 2 (1985), pp 399-412; <a href="https://www.jstor.org/stable/44236923">alternative link</a>. %H A330570 C. Hooley, <a href="https://doi.org/10.1112/plms/s3-7.1.396">An Asymptotic Formula in the Theory of Numbers</a>, Proceedings of the London Mathematical Society, Volume s3-7, Issue 1, 1957, Pages 396-413. %H A330570 Karl-Heinz Indlekofer, <a href="https://doi.org/10.1007/BF01304942">Eine asymptotische Formel in der Zahlentheorie</a> (German), Arch. Math. (Basel) 23 (1972), 619-624. MR0318080 (47 #6629). %H A330570 Yoichi Motohashi, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa16/aa1633.pdf">An asymptotic formula in the theory of numbers</a>, Acta Arith. 16 (1969/70), 255-264. MR0266884 (42 #1786). %H A330570 Don Redmond, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002313499">An asymptotic formula in the theory of numbers</a>, Math. Ann. 224 (1976), no. 3, 247-268. MR0419386 (54 #7407). %H A330570 E. C. Titchmarsh, <a href="https://doi.org/10.1093/qmath/os-13.1.129">Some problems in the analytic theory of numbers</a>, The Quarterly Journal of Mathematics 1 (1942): 129-152. %F A330570 a(n) ~ c * n * log(n)^8 /8!, where c = Product_{p prime} ((1-1/p)^4 * (1 + 4/p + 1/p^2)) = 0.049321673579400091761... (Titchmarsh, 1942). - _Amiram Eldar_, Apr 19 2024 %t A330570 Accumulate[a[n_]:=DivisorSum[n, DivisorSigma[0, #]&]^2; Array[a, 60]] (* _Vincenzo Librandi_, Jan 11 2020 *) %o A330570 (PARI) lista(nmax) = {my(s = 0); for(n = 1, nmax, s += vecprod(apply(e -> (e+1)*(e+2)/2, factor(n)[,2]))^2; print1(s, ", "));} \\ _Amiram Eldar_, Apr 19 2024 %Y A330570 Cf. A007425, A097988. %K A330570 nonn %O A330570 1,2 %A A330570 _N. J. A. Sloane_, Jan 08 2020