This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330581 #41 Dec 10 2023 15:45:21 %S A330581 2,3,10,1001,1004006004002, %T A330581 1020191144865623440455270145683555422808365843606721760320033 %N A330581 a(0) = 2; thereafter a(n) = a(n - 1)^n + 1. %C A330581 Note that this could be extended backwards to a(-1), and any nonzero value x for a(-1) would work, since x^0 + 1 = 2. %H A330581 David Johnson-Davies, <a href="http://www.lispology.com/show?2X07">Recursive functions without a base case</a> %p A330581 a:= proc(n) option remember; `if`(n<0, %, %p A330581 1 + a(n-1)^n) %p A330581 end: %p A330581 seq(a(n), n=0..5); # _Alois P. Heinz_, Dec 18 2019 %t A330581 a[0] = 2; a[n_] := a[n] = a[n - 1]^n + 1; Array[a, 6, 0] (* _Amiram Eldar_, Dec 19 2019 *) %t A330581 nxt[{n_,a_}]:={n+1,a^(n+1)+1}; NestList[nxt,{0,2},5][[;;,2]] (* _Harvey P. Dale_, Dec 10 2023 *) %o A330581 (Lisp) (defun a (n) (+ (if (zerop n) 1 (expt (a (- n 1)) n)) 1)) %o A330581 (PARI) a(n) = if(n==0, 2, a(n-1)^n+1) \\ _Felix Fröhlich_, Dec 18 2019 %Y A330581 Cf. A000522, A182242. %K A330581 nonn %O A330581 0,1 %A A330581 _David Johnson-Davies_, Dec 18 2019 %E A330581 Edited by _N. J. A. Sloane_, Dec 27 2019