This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330587 #16 Feb 11 2021 11:14:25 %S A330587 0,3,1,6,7,2,13,10,9,4,21,16,12,15,5,23,31,19,18,17,8,27,38,36,29,25, %T A330587 20,11,33,41,49,44,30,26,24,14,46,43,55,56,59,40,37,34,22,67,52,64,58, %U A330587 62,61,50,39,35,28,81,70,78,76,73,72,69,51,47,53,32,104,94,91,88,84,75,79,82,66,57,54,42 %N A330587 A(n,k) is the n-th index m such that A330439(m) = k; square array A(n,k), n>=1, k>=1, read by antidiagonals. %H A330587 Alois P. Heinz, <a href="/A330587/b330587.txt">Antidiagonals n = 1..365, flattened</a> %e A330587 Square array A(n,k) begins: %e A330587 0, 3, 6, 13, 21, 23, 27, 33, 46, 67, ... %e A330587 1, 7, 10, 16, 31, 38, 41, 43, 52, 70, ... %e A330587 2, 9, 12, 19, 36, 49, 55, 64, 78, 91, ... %e A330587 4, 15, 18, 29, 44, 56, 58, 76, 88, 93, ... %e A330587 5, 17, 25, 30, 59, 62, 73, 84, 90, 98, ... %e A330587 8, 20, 26, 40, 61, 72, 75, 87, 117, 139, ... %e A330587 11, 24, 37, 50, 69, 79, 85, 121, 124, 154, ... %e A330587 14, 34, 39, 51, 82, 102, 118, 142, 155, 157, ... %e A330587 22, 35, 47, 66, 97, 110, 133, 180, 190, 202, ... %e A330587 28, 53, 57, 74, 106, 116, 164, 183, 197, 205, ... %p A330587 b:= proc() 0 end: %p A330587 g:= proc(n) option remember; local t; %p A330587 t:= `if`(n<2, n, b(g(n-1))+b(g(n-2))); %p A330587 b(t):= b(t)+1; t %p A330587 end: %p A330587 f:= proc(n) option remember; b(g(n)) end: %p A330587 A:= proc() local l, t; t, l:= -1, proc() [] end; %p A330587 proc(n,k) local h; %p A330587 while nops(l(k))<n do t:= t+1; %p A330587 h:= f(t); l(h):= [l(h)[], t] %p A330587 od: l(k)[n] %p A330587 end %p A330587 end(): %p A330587 seq(seq(A(n, 1+d-n), n=1..d), d=1..14); %t A330587 b[_] = 0; %t A330587 g[n_] := g[n] = Module[{t}, t = If[n < 2, n, b[g[n - 1]] + b[g[n - 2]]]; b[t]++; t]; %t A330587 f[n_] := f[n] = b[g[n]]; %t A330587 A[n_, k_] := Module[{l, t = -1, h}, l[_] = {}; While[Length[l[k]] < n, t++; h = f[t]; AppendTo[l[h], t]]; l[k][[n]]]; %t A330587 Table[Table[A[n, 1 + d - n], {n, 1, d}], {d, 1, 14}] // Flatten (* _Jean-François Alcover_, Feb 11 2021, after _Alois P. Heinz_ *) %Y A330587 Column k=1 gives A330440. %Y A330587 Row n=1 gives A330588. %Y A330587 Main diagonal gives A330589. %Y A330587 Cf. A316774, A330439. %K A330587 nonn,tabl %O A330587 1,2 %A A330587 _Alois P. Heinz_, Dec 18 2019