This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330601 #10 Jan 10 2020 13:18:12 %S A330601 0,0,0,0,0,0,1,1,1,1,2,4,4,4,2,3,9,12,12,9,3,4,16,28,32,28,16,4,5,25, %T A330601 55,75,75,55,25,5,6,36,96,156,180,156,96,36,6,7,49,154,294,392,392, %U A330601 294,154,49,7,8,64,232,512,784,896,784,512,232,64,8,9,81,333,837,1458,1890,1890,1458,837,333,81,9 %N A330601 Array T read by antidiagonals: T(m,n) is the number of lattice walks from (0,0) to (m,n) using one step from {(3,0), (2,1), (1,2), (0,3)} and all other steps from {(1,0), (0,1)}. %F A330601 T(m,n) = (m+n-2)*(binomial(m+n-2,m) + binomial(m+n-2,n)). %e A330601 For (m,n) = (3,1), there are T(3,1) = 4 paths: %e A330601 (3,0), (0,1) %e A330601 (0,1), (3,0) %e A330601 (2,1), (1,0) %e A330601 (1,0), (2,1). %e A330601 Array T(m,n) begins %e A330601 n/m 0 1 2 3 4 5 6 7 8 9 %e A330601 0 0 0 0 1 2 3 4 5 6 7 %e A330601 1 0 0 1 4 9 16 25 36 49 64 %e A330601 2 0 1 4 12 28 55 96 154 232 333 %e A330601 3 1 4 12 32 75 156 294 512 837 1300 %e A330601 4 2 9 28 75 180 392 784 1458 2550 4235 %e A330601 5 3 16 55 156 392 896 1890 3720 6897 12144 %e A330601 6 4 25 96 294 784 1890 4200 8712 17028 31603 %e A330601 7 5 36 154 512 1458 3720 8712 19008 39039 76076 %e A330601 8 6 49 232 837 2550 6897 17028 39039 84084 171600 %e A330601 9 7 64 333 1300 4235 12144 31603 76076 171600 366080 %o A330601 (Sage) %o A330601 def T(m,n): %o A330601 return (m+n-2)*(binomial(m+n-2, m) + binomial(m+n-2, n)) %Y A330601 T(m,0) is A000027 for m >= 2. %Y A330601 T(m,1) is A000290 for m >= 1. %Y A330601 T(m,2) is A006000. %K A330601 tabl,nonn %O A330601 0,11 %A A330601 _Steven Klee_, Dec 19 2019