This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330625 #6 Apr 30 2020 09:33:48 %S A330625 1,1,3,14,123,1330,19694 %N A330625 Number of series-reduced rooted trees whose leaves are sets (not necessarily disjoint) with multiset union a strongly normal multiset of size n. %C A330625 A rooted tree is series-reduced if it has no unary branchings, so every non-leaf node covers at least two other nodes. %C A330625 A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. %e A330625 The a(1) = 1 through a(3) = 14 trees: %e A330625 {1} {1,2} {1,2,3} %e A330625 {{1},{1}} {{1},{1,2}} %e A330625 {{1},{2}} {{1},{2,3}} %e A330625 {{2},{1,3}} %e A330625 {{3},{1,2}} %e A330625 {{1},{1},{1}} %e A330625 {{1},{1},{2}} %e A330625 {{1},{2},{3}} %e A330625 {{1},{{1},{1}}} %e A330625 {{1},{{1},{2}}} %e A330625 {{1},{{2},{3}}} %e A330625 {{2},{{1},{1}}} %e A330625 {{2},{{1},{3}}} %e A330625 {{3},{{1},{2}}} %t A330625 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330625 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330625 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A330625 srtrees[m_]:=Prepend[Join@@Table[Tuples[srtrees/@p],{p,Select[mps[m],Length[#1]>1&]}],m]; %t A330625 Table[Sum[Length[Select[srtrees[s],FreeQ[#,{___,x_Integer,x_Integer,___}]&]],{s,strnorm[n]}],{n,0,5}] %Y A330625 The generalization where the leaves are multisets is A330467. %Y A330625 The singleton-reduced case is A330628. %Y A330625 The unlabeled version is A330624. %Y A330625 The case with all atoms distinct is A005804. %Y A330625 The case with all atoms equal is A196545. %Y A330625 The case where all leaves are singletons is A330471. %Y A330625 Cf. A000669, A004111, A141268, A300660, A316652, A330469, A330475, A330626, A330668, A330675. %K A330625 nonn,more %O A330625 0,3 %A A330625 _Gus Wiseman_, Dec 25 2019