This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330628 #8 Feb 28 2020 13:01:31 %S A330628 1,1,1,5,42,423,5458,80926 %N A330628 Number of series/singleton-reduced rooted trees on strongly normal multisets of size n whose leaves are sets (not necessarily disjoint). %C A330628 A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part). %C A330628 A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. %e A330628 The a(4) = 42 trees: %e A330628 {{1}{1}{12}} {{12}{12}} {{1}{123}} {1234} %e A330628 {{1}{{1}{12}}} {{1}{2}{12}} {{12}{13}} {{1}{234}} %e A330628 {{1}{{2}{12}}} {{1}{1}{23}} {{12}{34}} %e A330628 {{2}{{1}{12}}} {{1}{2}{13}} {{13}{24}} %e A330628 {{1}{3}{12}} {{14}{23}} %e A330628 {{1}{{1}{23}}} {{2}{134}} %e A330628 {{1}{{2}{13}}} {{3}{124}} %e A330628 {{1}{{3}{12}}} {{4}{123}} %e A330628 {{2}{{1}{13}}} {{1}{2}{34}} %e A330628 {{3}{{1}{12}}} {{1}{3}{24}} %e A330628 {{1}{4}{23}} %e A330628 {{2}{3}{14}} %e A330628 {{2}{4}{13}} %e A330628 {{3}{4}{12}} %e A330628 {{1}{{2}{34}}} %e A330628 {{1}{{3}{24}}} %e A330628 {{1}{{4}{23}}} %e A330628 {{2}{{1}{34}}} %e A330628 {{2}{{3}{14}}} %e A330628 {{2}{{4}{13}}} %e A330628 {{3}{{1}{24}}} %e A330628 {{3}{{2}{14}}} %e A330628 {{3}{{4}{12}}} %e A330628 {{4}{{1}{23}}} %e A330628 {{4}{{2}{13}}} %e A330628 {{4}{{3}{12}}} %t A330628 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330628 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330628 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A330628 ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m]; %t A330628 Table[Sum[Length[Select[ssrtrees[s],FreeQ[#,{___,x_Integer,x_Integer,___}]&]],{s,strnorm[n]}],{n,0,5}] %Y A330628 The generalization where leaves are multisets is A330471. %Y A330628 The non-singleton-reduced version is A330625. %Y A330628 The unlabeled version is A330626. %Y A330628 The case with all atoms distinct is A000311. %Y A330628 Strongly normal multiset partitions are A035310. %Y A330628 Cf. A000669, A004111, A004114, A005804, A196545, A281118, A330465, A330467, A330624, A330654, A330668. %K A330628 nonn,more %O A330628 0,4 %A A330628 _Gus Wiseman_, Dec 26 2019