cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330640 a(n) is the number of partitions of n with Durfee square of size <= 2.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 51, 67, 83, 105, 127, 156, 185, 222, 259, 305, 351, 407, 463, 530, 597, 676, 755, 847, 939, 1045, 1151, 1272, 1393, 1530, 1667, 1821, 1975, 2147, 2319, 2510, 2701, 2912, 3123, 3355, 3587, 3841, 4095, 4372, 4649, 4950, 5251, 5577, 5903, 6255, 6607, 6986
Offset: 0

Views

Author

Omar E. Pol, Dec 22 2019

Keywords

Comments

This is an easy sequence since A006918 is the partial sums of A008805 (triangular numbers repeated).

Crossrefs

Programs

  • PARI
    Vec((1 - x - x^2 + 2*x^3 - x^5 + x^6) / ((1 - x)^4*(1 + x)^2) + O(x^60)) \\ Colin Barker, Dec 31 2019

Formula

a(n) = A028310(n), 0 <= n <= 2.
a(n) = A028310(n) + A006918(n-3), n >= 3.
Or without A028310:
a(0) = 1, a(1) = 1, a(2) = 2.
a(n) = n + A006918(n-3), n >= 3.
From Colin Barker, Dec 31 2019: (Start)
G.f.: (1 - x - x^2 + 2*x^3 - x^5 + x^6) / ((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
a(n) = (3 - 3*(-1)^n + (49+3*(-1)^n)*n - 6*n^2 + 2*n^3) / 48.
(End)