This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330641 #23 Dec 27 2024 18:27:18 %S A330641 1,1,2,3,5,7,11,15,22,30,42,56,77,101,135,176,230,295,380,480,607,758, %T A330641 943,1161,1426,1733,2100,2525,3023,3595,4261,5017,5888,6874,7996,9258, %U A330641 10687,12281,14073,16066,18288,20747,23478,26482,29801,33442,37441,41811,46596,51801,57478,63639,70329,77567 %N A330641 a(n) is the number of partitions of n with Durfee square of size <= 3. %H A330641 Andrew Howroyd, <a href="/A330641/b330641.txt">Table of n, a(n) for n = 0..1000</a> %H A330641 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2,-3,0,6,0,-3,-2,1,2,-1). %F A330641 a(n) = A000041(n), 0 <= n <= 15. %F A330641 a(n) = A330640(n), 0 <= n <= 8. %F A330641 a(n) = A330640(n) + A117485(n), n >= 9. %F A330641 a(n) = n + A006918(n-3) + A117485(n), n >= 9. %F A330641 From _Colin Barker_, Dec 31 2019: (Start) %F A330641 G.f.: (1 - x - x^2 + 2*x^4 + x^5 - 2*x^6 - x^7 + x^8 + x^9 - x^11 + x^12) / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2). %F A330641 a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>12. (End) %o A330641 (PARI) seq(n)={Vec((1 - x - x^2 + 2*x^4 + x^5 - 2*x^6 - x^7 + x^8 + x^9 - x^11 + x^12) / ((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x*x^n))} \\ _Andrew Howroyd_, Dec 27 2024 %Y A330641 Cf. A000041, A006918, A008805, A028310, A115994, A115720, A117485, A330640. %K A330641 nonn,easy %O A330641 0,3 %A A330641 _Omar E. Pol_, Dec 22 2019