This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330654 #10 Feb 28 2020 12:56:44 %S A330654 1,1,2,12,112,1444,24099,492434,11913985 %N A330654 Number of series/singleton-reduced rooted trees on normal multisets of size n. %C A330654 A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part). %C A330654 A finite multiset is normal if it covers an initial interval of positive integers. %C A330654 First differs from A316651 at a(6) = 24099, A316651(6) = 24086. For example, ((1(12))(2(11))) and ((2(11))(1(12))) are considered identical for A316651 (series-reduced rooted trees), but {{{1},{1,2}},{{2},{1,1}}} and {{{2},{1,1}},{{1},{1,2}}} are different series/singleton-reduced rooted trees. %e A330654 The a(0) = 1 through a(3) = 12 trees: %e A330654 {} {1} {1,1} {1,1,1} %e A330654 {1,2} {1,1,2} %e A330654 {1,2,2} %e A330654 {1,2,3} %e A330654 {{1},{1,1}} %e A330654 {{1},{1,2}} %e A330654 {{1},{2,2}} %e A330654 {{1},{2,3}} %e A330654 {{2},{1,1}} %e A330654 {{2},{1,2}} %e A330654 {{2},{1,3}} %e A330654 {{3},{1,2}} %t A330654 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330654 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330654 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]]; %t A330654 ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m]; %t A330654 Table[Sum[Length[ssrtrees[s]],{s,allnorm[n]}],{n,0,5}] %Y A330654 The orderless version is A316651. %Y A330654 The strongly normal case is A330471. %Y A330654 The unlabeled version is A330470. %Y A330654 The balanced version is A330655. %Y A330654 The case with all atoms distinct is A000311. %Y A330654 The case with all atoms equal is A196545. %Y A330654 Normal multiset partitions are A255906. %Y A330654 Cf. A000669, A004114, A005804, A281118, A316651, A330469, A330626, A330676. %K A330654 nonn,more %O A330654 0,3 %A A330654 _Gus Wiseman_, Dec 26 2019