cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330654 Number of series/singleton-reduced rooted trees on normal multisets of size n.

This page as a plain text file.
%I A330654 #10 Feb 28 2020 12:56:44
%S A330654 1,1,2,12,112,1444,24099,492434,11913985
%N A330654 Number of series/singleton-reduced rooted trees on normal multisets of size n.
%C A330654 A series/singleton-reduced rooted tree on a multiset m is either the multiset m itself or a sequence of series/singleton-reduced rooted trees, one on each part of a multiset partition of m that is neither minimal (all singletons) nor maximal (only one part).
%C A330654 A finite multiset is normal if it covers an initial interval of positive integers.
%C A330654 First differs from A316651 at a(6) = 24099, A316651(6) = 24086. For example, ((1(12))(2(11))) and ((2(11))(1(12))) are considered identical for A316651 (series-reduced rooted trees), but {{{1},{1,2}},{{2},{1,1}}} and {{{2},{1,1}},{{1},{1,2}}} are different series/singleton-reduced rooted trees.
%e A330654 The a(0) = 1 through a(3) = 12 trees:
%e A330654   {}  {1}  {1,1}  {1,1,1}
%e A330654            {1,2}  {1,1,2}
%e A330654                   {1,2,2}
%e A330654                   {1,2,3}
%e A330654                   {{1},{1,1}}
%e A330654                   {{1},{1,2}}
%e A330654                   {{1},{2,2}}
%e A330654                   {{1},{2,3}}
%e A330654                   {{2},{1,1}}
%e A330654                   {{2},{1,2}}
%e A330654                   {{2},{1,3}}
%e A330654                   {{3},{1,2}}
%t A330654 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330654 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330654 allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
%t A330654 ssrtrees[m_]:=Prepend[Join@@Table[Tuples[ssrtrees/@p],{p,Select[mps[m],Length[m]>Length[#1]>1&]}],m];
%t A330654 Table[Sum[Length[ssrtrees[s]],{s,allnorm[n]}],{n,0,5}]
%Y A330654 The orderless version is A316651.
%Y A330654 The strongly normal case is A330471.
%Y A330654 The unlabeled version is A330470.
%Y A330654 The balanced version is A330655.
%Y A330654 The case with all atoms distinct is A000311.
%Y A330654 The case with all atoms equal is A196545.
%Y A330654 Normal multiset partitions are A255906.
%Y A330654 Cf. A000669, A004114, A005804, A281118, A316651, A330469, A330626, A330676.
%K A330654 nonn,more
%O A330654 0,3
%A A330654 _Gus Wiseman_, Dec 26 2019