A330657 Number of ways the n-th pentagonal number A000326(n) can be written as the difference of two positive pentagonal numbers.
0, 0, 0, 1, 1, 0, 2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 0, 2, 1, 1, 3, 1, 0, 2, 3, 0, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 4, 1, 0, 2, 1, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 3, 2, 1, 6, 1, 1, 1, 3, 2
Offset: 1
Keywords
Examples
Isosceles case, n=5: 2*5*(3*5-1) - 7*(3*7-1) = 0.
References
- N. J. A. Sloane et al., "sum of 2 triangular numbers is a triangular number", math-fun mailing list, Feb. 19-29, 2020.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- B. Klee, Pentathagorean triples: two easy proofs, seqfan mailing list, Mar. 20, 2020.
- M. A. Nyblom, On the representation of the integers as a difference of nonconsecutive triangular numbers, Fibonacci Quarterly 39:3 (2001), pp. 256-263.
Programs
-
Mathematica
PentaTriples[PNn_] := Sort[Select[{PNn, (-PNn + 3 PNn^2 + # - 3 #^2)/(6 #), (-PNn + 3 PNn^2 + # + 3 #^2)/(6 #) } & /@ Divisors[PNn*(3*PNn - 1)], And[And @@ (IntegerQ /@ #), And @@ (# > 0 & /@ #)] &]] Length[PentaTriples[#]] & /@ Range[100] a[n_] := Length@FindInstance[n > 0 && y > 0 && z > 0 && n (3 n - 1) + y (3 y - 1) == z (3 z - 1), {y, z}, Integers, 10^9]; a /@ Range[100]
Comments