cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330665 Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.

This page as a plain text file.
%I A330665 #4 Dec 29 2019 08:44:00
%S A330665 1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,5,1,1,1,2,1,3,1,5,1,1,
%T A330665 1,7,1,1,1,5,1,3,1,2,2,1,1,16,1,2,1,2,1,5,1,5,1,1,1,11,1,1,2,16,1,3,1,
%U A330665 2,1,3,1,27,1,1,2,2,1,3,1,16,2,1,1,11,1
%N A330665 Number of balanced reduced multisystems of maximal depth whose atoms are the prime indices of n.
%C A330665 First differs from A317145 at a(32) = 5, A317145(32) = 4.
%C A330665 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%C A330665 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%C A330665 Also series/singleton-reduced factorizations of n with Omega(n) levels of parentheses. See A001055, A050336, A050338, A050340, etc.
%F A330665 a(2^n) = A000111(n - 1).
%F A330665 a(product of n distinct primes) = A006472(n).
%e A330665 The a(n) multisystems for n = 2, 6, 12, 24, 48:
%e A330665   {1}  {1,2}  {{1},{1,2}}  {{{1}},{{1},{1,2}}}  {{{{1}}},{{{1}},{{1},{1,2}}}}
%e A330665               {{2},{1,1}}  {{{1,1}},{{1},{2}}}  {{{{1}}},{{{1,1}},{{1},{2}}}}
%e A330665                            {{{1}},{{2},{1,1}}}  {{{{1},{1}}},{{{1}},{{1,2}}}}
%e A330665                            {{{1,2}},{{1},{1}}}  {{{{1},{1,1}}},{{{1}},{{2}}}}
%e A330665                            {{{2}},{{1},{1,1}}}  {{{{1,1}}},{{{1}},{{1},{2}}}}
%e A330665                                                 {{{{1}}},{{{1}},{{2},{1,1}}}}
%e A330665                                                 {{{{1}}},{{{1,2}},{{1},{1}}}}
%e A330665                                                 {{{{1},{1}}},{{{2}},{{1,1}}}}
%e A330665                                                 {{{{1},{1,2}}},{{{1}},{{1}}}}
%e A330665                                                 {{{{1,1}}},{{{2}},{{1},{1}}}}
%e A330665                                                 {{{{1}}},{{{2}},{{1},{1,1}}}}
%e A330665                                                 {{{{1},{2}}},{{{1}},{{1,1}}}}
%e A330665                                                 {{{{1,2}}},{{{1}},{{1},{1}}}}
%e A330665                                                 {{{{2}}},{{{1}},{{1},{1,1}}}}
%e A330665                                                 {{{{2}}},{{{1,1}},{{1},{1}}}}
%e A330665                                                 {{{{2},{1,1}}},{{{1}},{{1}}}}
%t A330665 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A330665 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330665 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330665 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t A330665 Table[Length[Select[totm[primeMS[n]],Length[#]<=1||Depth[#]==PrimeOmega[n]&]],{n,100}]
%Y A330665 The last nonzero term in row n of A330667 is a(n).
%Y A330665 The chain version is A317145.
%Y A330665 The non-maximal version is A318812.
%Y A330665 Unlabeled versions are A330664 and A330663.
%Y A330665 Other labeled versions are A330675 (strongly normal) and A330676 (normal).
%Y A330665 Cf. A001055, A005121, A005804, A050336, A213427, A292505, A317144, A318849, A320160, A330474, A330475, A330679.
%K A330665 nonn
%O A330665 1,12
%A A330665 _Gus Wiseman_, Dec 27 2019