A330666 Number of non-isomorphic balanced reduced multisystems whose degrees (atom multiplicities) are the weakly decreasing prime indices of n.
1, 1, 1, 1, 2, 3, 6, 2, 10, 11, 20, 15, 90, 51, 80, 6, 468, 93, 2910, 80, 521, 277, 20644, 80, 334, 1761, 393, 521, 165874, 1374
Offset: 1
Examples
Non-isomorphic representatives of the a(2) = 1 through a(9) = 10 multisystems (commas and outer brackets elided): 1 11 12 111 112 1111 123 1122 {1}{11} {1}{12} {1}{111} {1}{23} {1}{122} {2}{11} {11}{11} {11}{22} {1}{1}{11} {12}{12} {{1}}{{1}{11}} {1}{1}{22} {{11}}{{1}{1}} {1}{2}{12} {{1}}{{1}{22}} {{11}}{{2}{2}} {{1}}{{2}{12}} {{12}}{{1}{2}} Non-isomorphic representatives of the a(12) = 15 multisystems: {1,1,2,3} {{1},{1,2,3}} {{1,1},{2,3}} {{1,2},{1,3}} {{2},{1,1,3}} {{1},{1},{2,3}} {{1},{2},{1,3}} {{2},{3},{1,1}} {{{1}},{{1},{2,3}}} {{{1,1}},{{2},{3}}} {{{1}},{{2},{1,3}}} {{{1,2}},{{1},{3}}} {{{2}},{{1},{1,3}}} {{{2}},{{3},{1,1}}} {{{2,3}},{{1},{1}}}
Crossrefs
Formula
a(2^n) = a(prime(n)) = A318813(n).
Comments