cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330667 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.

This page as a plain text file.
%I A330667 #6 Dec 31 2019 08:24:23
%S A330667 1,1,1,0,1,1,0,1,1,1,0,1,0,1,0,1,1,2,0,1,1,0,1,0,1,3,2,0,1,1,2,0,1,1,
%T A330667 2,0,1,0,1,0,1,1,5,5,0,1,0,1,0,1,1,0,1,2,0,1,1,3,0,1,1,5,9,5,0,1,0,1,
%U A330667 0,1,0,1,7,7,0,1,1,0,1,0,1,5,5,0,1,1,3
%N A330667 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose atoms are the prime indices of n.
%C A330667 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%C A330667 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
%e A330667 Triangle begins:
%e A330667   {}
%e A330667   1
%e A330667   1
%e A330667   1 0
%e A330667   1
%e A330667   1 0
%e A330667   1
%e A330667   1 1 0
%e A330667   1 0
%e A330667   1 0
%e A330667   1
%e A330667   1 2 0
%e A330667   1
%e A330667   1 0
%e A330667   1 0
%e A330667   1 3 2 0
%e A330667   1
%e A330667   1 2 0
%e A330667   1
%e A330667   1 2 0
%e A330667 Row n = 84 counts the following multisystems (commas elided):
%e A330667   {1124}  {{1}{124}}    {{{1}}{{1}{24}}}
%e A330667           {{11}{24}}    {{{11}}{{2}{4}}}
%e A330667           {{12}{14}}    {{{1}}{{2}{14}}}
%e A330667           {{2}{114}}    {{{12}}{{1}{4}}}
%e A330667           {{4}{112}}    {{{1}}{{4}{12}}}
%e A330667           {{1}{1}{24}}  {{{14}}{{1}{2}}}
%e A330667           {{1}{2}{14}}  {{{2}}{{1}{14}}}
%e A330667           {{1}{4}{12}}  {{{2}}{{4}{11}}}
%e A330667           {{2}{4}{11}}  {{{24}}{{1}{1}}}
%e A330667                         {{{4}}{{1}{12}}}
%e A330667                         {{{4}}{{2}{11}}}
%t A330667 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t A330667 totfac[n_,k_]:=If[k==1,1,Sum[totfac[Times@@Prime/@f,k-1],{f,Select[facs[n],1<Length[#]<PrimeOmega[n]&]}]];
%t A330667 Table[totfac[n,k],{n,100},{k,PrimeOmega[n]}]
%Y A330667 Row lengths are A001222.
%Y A330667 Row sums are A318812.
%Y A330667 The last nonzero term of row n is A330665(n).
%Y A330667 Column k = 2 is 0 if n is prime; otherwise it is A001055(n) - 2.
%Y A330667 Cf. A000311, A000669, A001678, A005121, A008827, A213427, A317145, A318846, A330474, A330475, A330655, A330666.
%K A330667 nonn,tabf
%O A330667 1,18
%A A330667 _Gus Wiseman_, Dec 27 2019