This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330675 #7 Dec 31 2019 08:24:15 %S A330675 1,1,2,6,43,440,7158,151414 %N A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n. %C A330675 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. %C A330675 A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities. %e A330675 The a(2) = 2 and a(3) = 6 multisystems: %e A330675 {1,1} {{1},{1,1}} %e A330675 {1,2} {{1},{1,2}} %e A330675 {{1},{2,3}} %e A330675 {{2},{1,1}} %e A330675 {{2},{1,3}} %e A330675 {{3},{1,2}} %e A330675 The a(4) = 43 multisystems (commas and outer brackets elided): %e A330675 {{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}} %e A330675 {{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}} %e A330675 {{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}} %e A330675 {{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}} %e A330675 {{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}} %e A330675 {{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}} %e A330675 {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}} %e A330675 {{2}}{{3}{11}} {{2}}{{3}{14}} %e A330675 {{23}}{{1}{1}} {{23}}{{1}{4}} %e A330675 {{3}}{{1}{12}} {{2}}{{4}{13}} %e A330675 {{3}}{{2}{11}} {{24}}{{1}{3}} %e A330675 {{3}}{{1}{24}} %e A330675 {{3}}{{2}{14}} %e A330675 {{3}}{{4}{12}} %e A330675 {{34}}{{1}{2}} %e A330675 {{4}}{{1}{23}} %e A330675 {{4}}{{2}{13}} %e A330675 {{4}}{{3}{12}} %t A330675 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A330675 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330675 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330675 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m]; %t A330675 Table[Sum[Length[Select[totm[m],Depth[#]==If[Length[m]<=1,2,Length[m]]&]],{m,strnorm[n]}],{n,0,5}] %Y A330675 The case with all atoms equal is A000111. %Y A330675 The case with all atoms different is A006472. %Y A330675 The version allowing all depths is A330475. %Y A330675 The unlabeled version is A330663. %Y A330675 The version where the atoms are the prime indices of n is A330665. %Y A330675 The (weakly) normal version is A330676. %Y A330675 The version where the degrees are the prime indices of n is A330728. %Y A330675 Multiset partitions of strongly normal multisets are A035310. %Y A330675 Series-reduced rooted trees with strongly normal leaves are A316652. %Y A330675 Cf. A000311, A000669, A001055, A001678, A005121, A005804, A316651, A318812, A330467, A330474, A330625, A330628, A330664, A330677, A330679. %K A330675 nonn,more %O A330675 0,3 %A A330675 _Gus Wiseman_, Dec 30 2019