cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.

This page as a plain text file.
%I A330675 #7 Dec 31 2019 08:24:15
%S A330675 1,1,2,6,43,440,7158,151414
%N A330675 Number of balanced reduced multisystems of maximum depth whose atoms constitute a strongly normal multiset of size n.
%C A330675 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%C A330675 A finite multiset is strongly normal if it covers an initial interval of positive integers with weakly decreasing multiplicities.
%e A330675 The a(2) = 2 and a(3) = 6 multisystems:
%e A330675   {1,1}  {{1},{1,1}}
%e A330675   {1,2}  {{1},{1,2}}
%e A330675          {{1},{2,3}}
%e A330675          {{2},{1,1}}
%e A330675          {{2},{1,3}}
%e A330675          {{3},{1,2}}
%e A330675 The a(4) = 43 multisystems (commas and outer brackets elided):
%e A330675   {{1}}{{1}{11}} {{1}}{{1}{12}} {{1}}{{1}{22}} {{1}}{{1}{23}} {{1}}{{2}{34}}
%e A330675   {{11}}{{1}{1}} {{11}}{{1}{2}} {{11}}{{2}{2}} {{11}}{{2}{3}} {{12}}{{3}{4}}
%e A330675                  {{1}}{{2}{11}} {{1}}{{2}{12}} {{1}}{{2}{13}} {{1}}{{3}{24}}
%e A330675                  {{12}}{{1}{1}} {{12}}{{1}{2}} {{12}}{{1}{3}} {{13}}{{2}{4}}
%e A330675                  {{2}}{{1}{11}} {{2}}{{1}{12}} {{1}}{{3}{12}} {{1}}{{4}{23}}
%e A330675                                 {{2}}{{2}{11}} {{13}}{{1}{2}} {{14}}{{2}{3}}
%e A330675                                 {{22}}{{1}{1}} {{2}}{{1}{13}} {{2}}{{1}{34}}
%e A330675                                                {{2}}{{3}{11}} {{2}}{{3}{14}}
%e A330675                                                {{23}}{{1}{1}} {{23}}{{1}{4}}
%e A330675                                                {{3}}{{1}{12}} {{2}}{{4}{13}}
%e A330675                                                {{3}}{{2}{11}} {{24}}{{1}{3}}
%e A330675                                                               {{3}}{{1}{24}}
%e A330675                                                               {{3}}{{2}{14}}
%e A330675                                                               {{3}}{{4}{12}}
%e A330675                                                               {{34}}{{1}{2}}
%e A330675                                                               {{4}}{{1}{23}}
%e A330675                                                               {{4}}{{2}{13}}
%e A330675                                                               {{4}}{{3}{12}}
%t A330675 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A330675 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330675 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330675 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t A330675 Table[Sum[Length[Select[totm[m],Depth[#]==If[Length[m]<=1,2,Length[m]]&]],{m,strnorm[n]}],{n,0,5}]
%Y A330675 The case with all atoms equal is A000111.
%Y A330675 The case with all atoms different is A006472.
%Y A330675 The version allowing all depths is A330475.
%Y A330675 The unlabeled version is A330663.
%Y A330675 The version where the atoms are the prime indices of n is A330665.
%Y A330675 The (weakly) normal version is A330676.
%Y A330675 The version where the degrees are the prime indices of n is A330728.
%Y A330675 Multiset partitions of strongly normal multisets are A035310.
%Y A330675 Series-reduced rooted trees with strongly normal leaves are A316652.
%Y A330675 Cf. A000311, A000669, A001055, A001678, A005121, A005804, A316651, A318812, A330467, A330474, A330625, A330628, A330664, A330677, A330679.
%K A330675 nonn,more
%O A330675 0,3
%A A330675 _Gus Wiseman_, Dec 30 2019