This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330679 #8 Jan 20 2024 16:07:16 %S A330679 1,1,2,4,12,40,180,936,5820,41288,331748,2968688,29307780,316273976, %T A330679 3704154568,46788812168,634037127612,9174782661984,141197140912208, %U A330679 2302765704401360,39671953757409256,719926077632193848,13726066030661998220,274313334040504957368 %N A330679 Number of balanced reduced multisystems whose atoms constitute an integer partition of n. %C A330679 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. %H A330679 Andrew Howroyd, <a href="/A330679/b330679.txt">Table of n, a(n) for n = 0..200</a> %F A330679 a(n > 1) = 2 * A318813(n). %e A330679 The a(0) = 1 through a(4) = 12 multisystems: %e A330679 {} {1} {2} {3} {4} %e A330679 {1,1} {1,2} {1,3} %e A330679 {1,1,1} {2,2} %e A330679 {{1},{1,1}} {1,1,2} %e A330679 {1,1,1,1} %e A330679 {{1},{1,2}} %e A330679 {{2},{1,1}} %e A330679 {{1},{1,1,1}} %e A330679 {{1,1},{1,1}} %e A330679 {{1},{1},{1,1}} %e A330679 {{{1}},{{1},{1,1}}} %e A330679 {{{1,1}},{{1},{1}}} %t A330679 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330679 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330679 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m]; %t A330679 Table[Sum[Length[totm[m]],{m,IntegerPartitions[n]}],{n,0,5}] %Y A330679 The case where the atoms are all 1's is A318813 = a(n)/2. %Y A330679 The version where the atoms constitute a strongly normal multiset is A330475. %Y A330679 The version where the atoms cover an initial interval is A330655. %Y A330679 The maximum-depth version is A330726. %Y A330679 Cf. A000041, A000111, A000669, A001970, A002846, A005121, A141268, A196545, A213427, A318812, A320160, A330474. %K A330679 nonn %O A330679 0,3 %A A330679 _Gus Wiseman_, Dec 31 2019 %E A330679 a(12) onwards from _Andrew Howroyd_, Jan 20 2024