cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330679 Number of balanced reduced multisystems whose atoms constitute an integer partition of n.

This page as a plain text file.
%I A330679 #8 Jan 20 2024 16:07:16
%S A330679 1,1,2,4,12,40,180,936,5820,41288,331748,2968688,29307780,316273976,
%T A330679 3704154568,46788812168,634037127612,9174782661984,141197140912208,
%U A330679 2302765704401360,39671953757409256,719926077632193848,13726066030661998220,274313334040504957368
%N A330679 Number of balanced reduced multisystems whose atoms constitute an integer partition of n.
%C A330679 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%H A330679 Andrew Howroyd, <a href="/A330679/b330679.txt">Table of n, a(n) for n = 0..200</a>
%F A330679 a(n > 1) = 2 * A318813(n).
%e A330679 The a(0) = 1 through a(4) = 12 multisystems:
%e A330679   {}  {1}  {2}    {3}          {4}
%e A330679            {1,1}  {1,2}        {1,3}
%e A330679                   {1,1,1}      {2,2}
%e A330679                   {{1},{1,1}}  {1,1,2}
%e A330679                                {1,1,1,1}
%e A330679                                {{1},{1,2}}
%e A330679                                {{2},{1,1}}
%e A330679                                {{1},{1,1,1}}
%e A330679                                {{1,1},{1,1}}
%e A330679                                {{1},{1},{1,1}}
%e A330679                                {{{1}},{{1},{1,1}}}
%e A330679                                {{{1,1}},{{1},{1}}}
%t A330679 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330679 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330679 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t A330679 Table[Sum[Length[totm[m]],{m,IntegerPartitions[n]}],{n,0,5}]
%Y A330679 The case where the atoms are all 1's is A318813 = a(n)/2.
%Y A330679 The version where the atoms constitute a strongly normal multiset is A330475.
%Y A330679 The version where the atoms cover an initial interval is A330655.
%Y A330679 The maximum-depth version is A330726.
%Y A330679 Cf. A000041, A000111, A000669, A001970, A002846, A005121, A141268, A196545, A213427, A318812, A320160, A330474.
%K A330679 nonn
%O A330679 0,3
%A A330679 _Gus Wiseman_, Dec 31 2019
%E A330679 a(12) onwards from _Andrew Howroyd_, Jan 20 2024