cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330694 Triangular array read by rows. T(n,k) is the number of k-normal elements in GF(2^n), n >= 1, 0 <= k <= n-1.

This page as a plain text file.
%I A330694 #40 Aug 25 2024 18:51:29
%S A330694 1,2,1,3,3,1,8,4,2,1,15,15,0,0,1,24,12,18,3,5,1,49,49,0,14,14,0,1,128,
%T A330694 64,32,16,8,4,2,1,189,189,63,63,0,0,3,3,1,480,240,240,0,30,15,15,0,2,
%U A330694 1,1023,1023,0,0,0,0,0,0,0,0,1,1536,768,768,384,384,96,96,24,26,7,5,1,4095,4095,0,0,0,0,0,0,0,0,0,0,1
%N A330694 Triangular array read by rows. T(n,k) is the number of k-normal elements in GF(2^n), n >= 1, 0 <= k <= n-1.
%C A330694 Let g(x) = Sum_{i=0..n-1} g_i x^i in GF(q)[x]. Define an action on the algebraic closure of GF(q) by g*a = Sum_{i=0..n-1} g_i a^(q^i). The annihilator of a is an ideal and is generated by a polynomial g of minimum degree. If deg(g) = n-k then a is k-normal.
%C A330694 An element a in GF(q^n) is 0-normal if {a, a^q, a^(q^2), ..., a^(q^(n-1))} is a basis for GF(q^n) over GF(q).
%H A330694 S. Huczynska, G. Mullen, D. Panario, and D. Thomson, <a href="https://doi.org/10.1016/j.ffa.2013.07.004">Existences and properties of k-normal elements over finite fields</a>, Finite Fields and Their Applications, 24 (2013), 170-183.
%H A330694 Zülfükar Saygi, Ernist Tilenbaev, Çetin Ürtiş, <a href="https://doi.org/10.3906/mat-1805-113">On the number of k-normal elements over finite fields</a>, Turk J Math., (2019) 43.795.812.
%H A330694 David Thompson, <a href="https://pdfs.semanticscholar.org/d0b2/ce1a4b89d3198cc0444e54c238d459a16a22.pdf">Something about normal bases over finite fields</a>, Existence and properties of k-normal elements over finite fields, Slides, (2013).
%F A330694 T(n, k) = Sum_{h | x^n-1, deg(h) = n-k} phi_2(h) where phi_2(h) is the generalized Euler phi function and the polynomial division is in GF(2)[x].
%e A330694 Triangle begins
%e A330694      1;
%e A330694      2,    1;
%e A330694      3,    3,   1;
%e A330694      8,    4,   2,   1;
%e A330694     15,   15,   0,   0,   1;
%e A330694     24,   12,  18,   3,   5,  1;
%e A330694     49,   49,   0,  14,  14,  0,  1;
%e A330694    128,   64,  32,  16,   8,  4,  2,  1;
%e A330694    189,  189,  63,  63,   0,  0,  3,  3,  1;
%e A330694    480,  240, 240,   0,  30, 15, 15,  0,  2, 1;
%e A330694   1023, 1023,   0,   0,   0,  0,  0,  0,  0, 0, 1;
%e A330694   1536,  768, 768, 384, 384, 96, 96, 24, 26, 7, 5, 1;
%e A330694   4095, 4095,   0,   0,   0,  0,  0,  0,  0, 0, 0, 0, 1;
%t A330694 Needs["FiniteFields`"];Table[b = Map[GF[2^n][#] &, Tuples[{0, 1}, n]];
%t A330694   Table[Count[Table[MatrixRank[Table[b[[i]]^(2^k), {k, 0, n - 1}][[All, 1]],
%t A330694        Modulus -> 2], {i, 2, 2^n}], k], {k, 1, n}] // Reverse, {n, 1, 8}] // Grid
%Y A330694 Column k=0 gives A003473.
%K A330694 nonn,tabl
%O A330694 1,2
%A A330694 _Geoffrey Critzer_, Dec 25 2019