This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330694 #40 Aug 25 2024 18:51:29 %S A330694 1,2,1,3,3,1,8,4,2,1,15,15,0,0,1,24,12,18,3,5,1,49,49,0,14,14,0,1,128, %T A330694 64,32,16,8,4,2,1,189,189,63,63,0,0,3,3,1,480,240,240,0,30,15,15,0,2, %U A330694 1,1023,1023,0,0,0,0,0,0,0,0,1,1536,768,768,384,384,96,96,24,26,7,5,1,4095,4095,0,0,0,0,0,0,0,0,0,0,1 %N A330694 Triangular array read by rows. T(n,k) is the number of k-normal elements in GF(2^n), n >= 1, 0 <= k <= n-1. %C A330694 Let g(x) = Sum_{i=0..n-1} g_i x^i in GF(q)[x]. Define an action on the algebraic closure of GF(q) by g*a = Sum_{i=0..n-1} g_i a^(q^i). The annihilator of a is an ideal and is generated by a polynomial g of minimum degree. If deg(g) = n-k then a is k-normal. %C A330694 An element a in GF(q^n) is 0-normal if {a, a^q, a^(q^2), ..., a^(q^(n-1))} is a basis for GF(q^n) over GF(q). %H A330694 S. Huczynska, G. Mullen, D. Panario, and D. Thomson, <a href="https://doi.org/10.1016/j.ffa.2013.07.004">Existences and properties of k-normal elements over finite fields</a>, Finite Fields and Their Applications, 24 (2013), 170-183. %H A330694 Zülfükar Saygi, Ernist Tilenbaev, Çetin Ürtiş, <a href="https://doi.org/10.3906/mat-1805-113">On the number of k-normal elements over finite fields</a>, Turk J Math., (2019) 43.795.812. %H A330694 David Thompson, <a href="https://pdfs.semanticscholar.org/d0b2/ce1a4b89d3198cc0444e54c238d459a16a22.pdf">Something about normal bases over finite fields</a>, Existence and properties of k-normal elements over finite fields, Slides, (2013). %F A330694 T(n, k) = Sum_{h | x^n-1, deg(h) = n-k} phi_2(h) where phi_2(h) is the generalized Euler phi function and the polynomial division is in GF(2)[x]. %e A330694 Triangle begins %e A330694 1; %e A330694 2, 1; %e A330694 3, 3, 1; %e A330694 8, 4, 2, 1; %e A330694 15, 15, 0, 0, 1; %e A330694 24, 12, 18, 3, 5, 1; %e A330694 49, 49, 0, 14, 14, 0, 1; %e A330694 128, 64, 32, 16, 8, 4, 2, 1; %e A330694 189, 189, 63, 63, 0, 0, 3, 3, 1; %e A330694 480, 240, 240, 0, 30, 15, 15, 0, 2, 1; %e A330694 1023, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 1; %e A330694 1536, 768, 768, 384, 384, 96, 96, 24, 26, 7, 5, 1; %e A330694 4095, 4095, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; %t A330694 Needs["FiniteFields`"];Table[b = Map[GF[2^n][#] &, Tuples[{0, 1}, n]]; %t A330694 Table[Count[Table[MatrixRank[Table[b[[i]]^(2^k), {k, 0, n - 1}][[All, 1]], %t A330694 Modulus -> 2], {i, 2, 2^n}], k], {k, 1, n}] // Reverse, {n, 1, 8}] // Grid %Y A330694 Column k=0 gives A003473. %K A330694 nonn,tabl %O A330694 1,2 %A A330694 _Geoffrey Critzer_, Dec 25 2019