A330701 Numbers k such that psi(phi(k)) = 2 * phi(psi(k)), where psi(k) is the Dedekind psi function (A001615) and phi(k) is the Euler totient function (A000010).
26, 39, 45, 51, 52, 58, 74, 82, 98, 104, 111, 116, 135, 142, 146, 147, 148, 164, 178, 195, 196, 208, 219, 232, 284, 286, 292, 296, 328, 356, 357, 386, 392, 405, 406, 416, 435, 464, 495, 555, 561, 568, 572, 574, 579, 584, 585, 592, 598, 615, 622, 638, 646, 650
Offset: 1
Keywords
Examples
26 is in the sequence since psi(phi(26)) = psi(12) = 24, and 2 * phi(psi(26)) = 2 * phi(42) = 2 * 12 = 24.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Jozsef Sandor, On the composition of some arithmetic functions, II, Journal of Inequalities in Pure and Applied Mathematics, Vol. 6, No. 3 (2005), Article 73.
Programs
-
Mathematica
psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/Transpose[FactorInteger[n]][[1]]); Select[Range[1000], psi[EulerPhi[#]] == 2 * EulerPhi[psi[#]] &]
Comments