cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330712 Numbers k such that F(k) - 1 is divisible by floor((k - 1)/2), where F(k) is the k-th Fibonacci number (A000045).

Original entry on oeis.org

3, 4, 5, 7, 15, 22, 25, 26, 27, 35, 41, 47, 49, 50, 73, 74, 75, 87, 89, 95, 97, 98, 101, 107, 121, 122, 135, 145, 146, 147, 167, 193, 194, 195, 207, 215, 217, 218, 221, 227, 241, 242, 255, 275, 289, 290, 315, 327, 335, 337, 338, 347, 361, 362, 385, 386, 387, 395
Offset: 1

Views

Author

Amiram Eldar, Dec 27 2019

Keywords

Comments

Numbers of the form F(k) - 1 have the same Zeckendorf (A014417) and dual Zeckendorf (A104326) representations: alternating digits of 1 and 0 whose sum is floor((k - 1)/2). Thus, if k is in this sequence then F(k) - 1 is both a Zeckendorf-Niven number (A328208) and a lazy-Fibonacci-Niven number (A328212), i.e., A000071(a(n)) is in A330711.

Examples

			7 is in this sequence since F(7) - 1 = 13 - 1 = 12 is divisible by floor((7 - 1)/2) = 3. The Zeckendorf and dual Zeckendorf representations of 7 are both 1010, whose sum of digits, 2, divides 12. Thus 12 is both a Zeckendorf-Niven number and a lazy-Fibonacci-Niven number.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3, 400], Divisible[Fibonacci[#] - 1, Floor[(# - 1)/2]] &]