A330720 a(n) is the number of ways of writing the binary expansion of n as a product (or concatenation) of nonpalindromes.
0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 1, 2, 2, 2, 2, 0, 2, 1, 1, 2, 2, 0, 1, 1, 1, 0, 1, 3, 3, 3, 3, 3, 3, 2, 2, 3, 4, 2, 2, 2, 3, 1, 1, 3, 2, 1, 2, 2, 3, 1, 1, 2, 2, 1, 1, 1, 1, 0, 1, 4, 4, 4, 3, 5, 5, 3, 3, 4, 4, 4, 4, 5, 5, 2, 2, 5, 4, 4, 4, 0, 4
Offset: 0
Examples
For n = 41: - the binary expansion of 41 is "101001", - the possible products of nonpalindromes are "101001", "1010"."01", and "10"."10"."01", - hence a(41) = 3.
Links
Programs
-
Maple
ispali:= proc(L) L = ListTools:-Reverse(L) end proc: g:= proc(L) option remember; local m; add(procname(L[m+1..-1]), m= remove(t -> ispali(L[1..t]),[$1..nops(L)])) end proc: g([]):= 1: seq(g(convert(n,base,2)),n=0..100); # Robert Israel, Dec 29 2019
-
PARI
a(n) = my (b=binary(n), v=b!=Vecrev(b)); for (s=1, #b, my (z=b[s..#b]); if (z!=Vecrev(z), v+=a(fromdigits(b[1..s-1],2)))); v
Formula
a(2^k-1) = 0 for any k >= 0.
a(A020988(k+1)) = 2^k for any k >= 0.
Comments