cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.

This page as a plain text file.
%I A330727 #5 Jan 05 2020 08:11:03
%S A330727 1,1,1,1,2,1,3,2,1,3,1,7,7,1,5,5,1,5,9,5,1,9,11,1,9,28,36,16,1,10,24,
%T A330727 16,1,14,38,27,1,13,18,1,13,69,160,164,61,1,24,79,62,1,20,160,580,
%U A330727 1022,855,272,1,19,59,45,1,27,138,232,123,1,17,77,121,61
%N A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.
%C A330727 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%C A330727 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
%F A330727 T(2^n,k) = A008826(n,k).
%e A330727 Triangle begins:
%e A330727    {}
%e A330727    1
%e A330727    1
%e A330727    1   1
%e A330727    1   2
%e A330727    1   3   2
%e A330727    1   3
%e A330727    1   7   7
%e A330727    1   5   5
%e A330727    1   5   9   5
%e A330727    1   9  11
%e A330727    1   9  28  36  16
%e A330727    1  10  24  16
%e A330727    1  14  38  27
%e A330727    1  13  18
%e A330727    1  13  69 160 164  61
%e A330727    1  24  79  62
%e A330727 For example, row n = 12 counts the following multisystems:
%e A330727   {1,1,2,3}  {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}
%e A330727              {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}
%e A330727              {{1,2},{1,3}}    {{{1}},{{2},{1,3}}}
%e A330727              {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}
%e A330727              {{3},{1,1,2}}    {{{1}},{{3},{1,2}}}
%e A330727              {{1},{1},{2,3}}  {{{1,3}},{{1},{2}}}
%e A330727              {{1},{2},{1,3}}  {{{2}},{{1},{1,3}}}
%e A330727              {{1},{3},{1,2}}  {{{2}},{{3},{1,1}}}
%e A330727              {{2},{3},{1,1}}  {{{2,3}},{{1},{1}}}
%e A330727                               {{{3}},{{1},{1,2}}}
%e A330727                               {{{3}},{{2},{1,1}}}
%t A330727 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A330727 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330727 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330727 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t A330727 Table[Length[Select[totm[nrmptn[n]],Depth[#]==k&]],{n,2,10},{k,2,Length[nrmptn[n]]}]
%Y A330727 Row sums are A318846.
%Y A330727 Final terms in each row are A330728.
%Y A330727 Row prime(n) is row n of A330784.
%Y A330727 Row 2^n is row n of A008826.
%Y A330727 Row n is row A181821(n) of A330667.
%Y A330727 Column k = 3 is A318284(n) - 2 for n > 2.
%Y A330727 Cf. A000111, A002846, A005121, A292504, A318812, A318813, A318847, A318848, A318849, A330475, A330666, A330935.
%K A330727 nonn,tabf
%O A330727 2,5
%A A330727 _Gus Wiseman_, Jan 04 2020