This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330727 #5 Jan 05 2020 08:11:03 %S A330727 1,1,1,1,2,1,3,2,1,3,1,7,7,1,5,5,1,5,9,5,1,9,11,1,9,28,36,16,1,10,24, %T A330727 16,1,14,38,27,1,13,18,1,13,69,160,164,61,1,24,79,62,1,20,160,580, %U A330727 1022,855,272,1,19,59,45,1,27,138,232,123,1,17,77,121,61 %N A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n. %C A330727 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem. %C A330727 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}. %F A330727 T(2^n,k) = A008826(n,k). %e A330727 Triangle begins: %e A330727 {} %e A330727 1 %e A330727 1 %e A330727 1 1 %e A330727 1 2 %e A330727 1 3 2 %e A330727 1 3 %e A330727 1 7 7 %e A330727 1 5 5 %e A330727 1 5 9 5 %e A330727 1 9 11 %e A330727 1 9 28 36 16 %e A330727 1 10 24 16 %e A330727 1 14 38 27 %e A330727 1 13 18 %e A330727 1 13 69 160 164 61 %e A330727 1 24 79 62 %e A330727 For example, row n = 12 counts the following multisystems: %e A330727 {1,1,2,3} {{1},{1,2,3}} {{{1}},{{1},{2,3}}} %e A330727 {{1,1},{2,3}} {{{1,1}},{{2},{3}}} %e A330727 {{1,2},{1,3}} {{{1}},{{2},{1,3}}} %e A330727 {{2},{1,1,3}} {{{1,2}},{{1},{3}}} %e A330727 {{3},{1,1,2}} {{{1}},{{3},{1,2}}} %e A330727 {{1},{1},{2,3}} {{{1,3}},{{1},{2}}} %e A330727 {{1},{2},{1,3}} {{{2}},{{1},{1,3}}} %e A330727 {{1},{3},{1,2}} {{{2}},{{3},{1,1}}} %e A330727 {{2},{3},{1,1}} {{{2,3}},{{1},{1}}} %e A330727 {{{3}},{{1},{1,2}}} %e A330727 {{{3}},{{2},{1,1}}} %t A330727 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]]; %t A330727 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A330727 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A330727 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m]; %t A330727 Table[Length[Select[totm[nrmptn[n]],Depth[#]==k&]],{n,2,10},{k,2,Length[nrmptn[n]]}] %Y A330727 Row sums are A318846. %Y A330727 Final terms in each row are A330728. %Y A330727 Row prime(n) is row n of A330784. %Y A330727 Row 2^n is row n of A008826. %Y A330727 Row n is row A181821(n) of A330667. %Y A330727 Column k = 3 is A318284(n) - 2 for n > 2. %Y A330727 Cf. A000111, A002846, A005121, A292504, A318812, A318813, A318847, A318848, A318849, A330475, A330666, A330935. %K A330727 nonn,tabf %O A330727 2,5 %A A330727 _Gus Wiseman_, Jan 04 2020