cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.

This page as a plain text file.
%I A330728 #4 Dec 31 2019 08:23:43
%S A330728 1,1,1,1,1,2,2,3,7,5,5,11,16,16,27,18,61,62,272,45,123,61,1385,105,
%T A330728 152,272,501,211,7936,362
%N A330728 Number of balanced reduced multisystems of maximum depth whose degrees (atom multiplicities) are the prime indices of n.
%C A330728 A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
%C A330728 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
%F A330728 a(2^n) = A006472(n).
%F A330728 a(prime(n)) = A000111(n - 1).
%e A330728 The a(n) multisystems for n = 3, 6, 8, 9, 10, 12 (commas and outer brackets elided):
%e A330728   11  {1}{12}  {1}{23}  {{1}}{{1}{22}}  {{1}}{{1}{12}}  {{1}}{{1}{23}}
%e A330728       {2}{11}  {2}{13}  {{11}}{{2}{2}}  {{11}}{{1}{2}}  {{11}}{{2}{3}}
%e A330728                {3}{12}  {{1}}{{2}{12}}  {{1}}{{2}{11}}  {{1}}{{2}{13}}
%e A330728                         {{12}}{{1}{2}}  {{12}}{{1}{1}}  {{12}}{{1}{3}}
%e A330728                         {{2}}{{1}{12}}  {{2}}{{1}{11}}  {{1}}{{3}{12}}
%e A330728                         {{2}}{{2}{11}}                  {{13}}{{1}{2}}
%e A330728                         {{22}}{{1}{1}}                  {{2}}{{1}{13}}
%e A330728                                                         {{2}}{{3}{11}}
%e A330728                                                         {{23}}{{1}{1}}
%e A330728                                                         {{3}}{{1}{12}}
%e A330728                                                         {{3}}{{2}{11}}
%t A330728 nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
%t A330728 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A330728 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A330728 totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1<Length[#]<Length[m]&]}],m];
%t A330728 Table[Length[Select[totm[nrmptn[n]],Depth[#]==If[n<=2,2,Length[nrmptn[n]]]&]],{n,20}]
%Y A330728 The version with distinct atoms is A006472.
%Y A330728 The non-maximal version is A318846.
%Y A330728 A tree version is A318848, with orderless version A318849.
%Y A330728 The unlabeled version is A330664.
%Y A330728 Final terms in each row of A330727.
%Y A330728 See also A330675 (strongly normal), A330676 (normal), and A330726 (partition).
%Y A330728 Cf. A000111, A001055, A005121, A292504, A292505, A317145, A330665, A330666.
%K A330728 nonn,more
%O A330728 1,6
%A A330728 _Gus Wiseman_, Dec 30 2019