This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A330757 #6 Jan 02 2020 13:31:35 %S A330757 0,1,1,1,1,2,1,1,1,2,1,3,1,2,2,1,1,2,1,2,2,2,1,3,1,2,1,2,1,4,1,1,2,2, %T A330757 2,3,1,2,2,3,1,3,1,2,3,2,1,3,1,2,2,2,1,2,2,3,2,2,1,6,1,2,3,1,2,3,1,2, %U A330757 2,4,1,4,1,2,2,2,2,3,1,3,1,2,1,5,2,2,2 %N A330757 Let d(1) < d(2) < ... < d(q) denote the divisors of n; a(n) is the number of elements of the set { d(1)/d(2), d(2)/d(3), ..., d(q-1)/d(q) }. %C A330757 This sequence is a variant of A060682; here we consider the quotients, there the differences of consecutive divisors. %C A330757 The sequence is unbounded since a(n!) >= n-1 for any n > 0. %F A330757 a(n) = 1 iff n is a prime power (A246655). %e A330757 For n = 42: %e A330757 - the divisors of 42 are: 1, 2, 3, 6, 7, 14, 21, 42, %e A330757 - the corresponding quotients are: 1/2, 2/3, 1/2, 6/7, 1/2, 2/3, 1/2, %e A330757 - which corresponds to the set { 1/2, 2/3, 6/7 }, %e A330757 - hence a(42) = 3. %o A330757 (PARI) a(n) = my (d=divisors(n)); #Set(vector(#d-1, k, d[k]/d[k+1])) %Y A330757 Cf. A060682, A246655. %K A330757 nonn %O A330757 1,6 %A A330757 _Rémy Sigrist_, Dec 29 2019